• Title/Summary/Keyword: LMI 최적화

Search Result 33, Processing Time 0.023 seconds

Delay-dependent $H_{\infty}$ filtering for continuous-time singular systems with multiple state-delays (다중 상태 시간지연을 가지는 연속시간 특이시스템의 지연종속 $H_{\infty}$ 필터링)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.5
    • /
    • pp.22-28
    • /
    • 2009
  • In this paper, we consider the problem of $H_{\infty}$ filtering for continuous-time singular systems with multiple state-delays. The aim of designed filter is to guarantee regularity, impulse-free, asymptotic stability and $H_{\infty}$ norm bound of filtering error singular system. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent BRL (bounded real lemma) for singular systems with multiple state-delays is derived. Based on the result, the existence condition of $H_{\infty}$ filter and filter design method are proposed in terms of LMI (linear matrix inequality). Finally, a numerical example is provided to show the validity of the design methods.

Robust Stabilization and Guaranteed Cost Control for Discrete-time Singular Systems with Parameter Uncertainties (변수 불확실성을 가지는 이산시간 특이시스템의 강인 안정화 및 강인 보장비용 제어)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • In this paper, we consider the design problem of robust stabilization and robust guaranteed cost state feedback controller for discrete-time singular systems with parameter uncertainties by LMI(linear matrix inequality) approach without semi-definite condition and decomposition of system matrices. The objective of robust stabilization controller is to construct a state feedback controller such that the closed-loop system is regular, causal, and stable. In the case of robust guaranteed cost control, the optimal value of guaranteed cost and controller design method are presented on the basis of robust stabilization control technique. Finally, a numerical example is provided to show the validity of the design methods.

Robust Stabilization of Discrete Singular Systems with Parameter Uncertainty and Controller Fragility (변수 불확실성과 제어기 악성을 가지는 이산 특이시스템의 강인 안정화)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.5
    • /
    • pp.1-7
    • /
    • 2008
  • This paper presents not only the robust stabilization technique but also robust non-fragile controller design method for discrete-time singular systems and static state feedback controller with multiplicative uncertainty. The condition for the existence of robust stabilization controller, the admissible controller design method, and the measure of non-fragility in controller are proposed via LMI(linear matrix inequality) approach. In order to get the maximum measure of non-fragility, the obtained sufficient condition can be rewritten as LMI optimization form in terms of transformed variable. Therefore, the presented robust non-fragile controller for discrete-time singular systems guarantees robust stability in spite of parameter uncertainty and controller fragility. Finally, a numerical example is given to show the validity of the design method.

TS Fuzzy Classifier Using A Linear Matrix Inequality (선형 행렬 부등식을 이용한 TS 퍼지 분류기 설계)

  • Kim, Moon-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • his paper presents a novel design technique for the TS fuzzy classifier via linear matrix inequalities(LMI). To design the TS fuzzy classifier built by the TS fuzzy model, the consequent parameters are determined to maximize the classifier's performance. Differ from the conventional fuzzy classifier design techniques, convex optimization technique is used to resolve the determination problem. Consequent parameter identification problems are first reformulated to the convex optimization problem. The convex optimization problem is then efficiently solved by converting linear matrix inequality problems. The TS fuzzy classifier has the optimal consequent parameter via the proposed design procedure in sense of the minimum classification error. Simulations are given to evaluate the proposed fuzzy classifier; Iris data classification and Wisconsin Breast Cancer Database data classification. Finally, simulation results show the utility of the integrated linear matrix inequalities approach to design of the TS fuzzy classifier.

Reconfiguration Control Using LMI-based Constrained MPC (선형행렬부등식 기반의 모델예측 제어기법을 이용한 재형상 제어)

  • Oh, Hyon-Dong;Min, Byoung-Mun;Kim, Tae-Hun;Tahk, Min-Jea;Lee, Jang-Ho;Kim, Eung-Tai
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • In developing modern aircraft, the reconfiguration control that can improve the safety and the survivability against the unexpected failure by partitioning control surfaces into several parts has been actively studied. This paper deals with the reconfiguration control using model predictive control method considering the saturation of control surfaces under the control surface failure. Linearized aircraft model at trim condition is used as the internal model of model predictive control. We propose the controller that performs optimization using LMI (linear matrix inequalities) based semi-definite programming in case that control surface saturation occurs, otherwise, uses analytic solution of the model predictive control. The performance of the proposed control method is evaluated by nonlinear simulation under the flight scenario of control surface failure.

Non-fragile robust guaranteed cost control for descriptor systems with parameter uncertainties (변수 불확실성 특이시스템의 비약성 강인 보장비용 제어)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.59-66
    • /
    • 2007
  • In this paper, we consider the non-fragile robust guaranteed cost state feedback controllers design method for descriptor systems with parameter uncertainties and static state feedback controller with multiplicative uncertainty. The sufficient condition of controller existence, the design method of non-fragile robust guaranteed cost controller, the measure of non-fragility in controller, the upper bound of guaranteed cost performance measure to minimize the guaranteed cost are presented via LMI(linear matrix inequality) technique. Also, the sufficient condition can be rewritten as LMI form in terms of transformed variables through singular value decomposition, some changes of variables, and Schur complements. Therefore, the obtained non-fragile robust guaranteed cost controller satisfies the asymptotic stability and minimizes the guaranteed cost for the closed loop descriptor systems with parameter uncertainties and controller fragility. Finally, a numerical example is given to illustrate the design method.

Robust and Non-fragile $H^{\infty}$ Controller Design for Tracking Servo of Blu-ray disc Drive System (Blu-ray 디스크 드라이브 시스템 트래킹 서보시스템에 대한 견실비약성 $H^{\infty}$ 상태궤환 제어기 설계)

  • Lee, Hyung-Ho;Kim, Joon-Ki;Kim, Woon-Ki;Jo, Sang-Woo;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.3
    • /
    • pp.32-41
    • /
    • 2008
  • In this paper, we describe the synthesis of robust and non-fragile $H^{\infty}$ state feedback controllers for linear systems with affine parameter uncertain tracking servo system of blu-ray disc drive, as well as static state feedback controller with polytopic uncertainty Similarity any other control system, the objective of the track-following system design for optical disc drives is to construct the system with better performance and robustness against modeling uncertainties and various disturbances. Also, the obtained condition can be rewritten as parameterized linear matrix inequalities(PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of controller gain variations within a resulted polytopic region.

Development of non-fragile $H_{\infty}$ controller design algorithm for singular systems (특이시스템의 비약성 $H_{\infty}$ 제어기 설계 알고리듬 개발)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.9-14
    • /
    • 2005
  • In this paper, we consider the synthesis of non-fragile $H_{\infty}$ state feedback controllers for singular systems and static state feedback controller with multiplicative uncertainty. The sufficient condition of controller existence, the design method of non-fragile $H_{\infty}$ controller, and the measure of non-fragility in controller are presented via LMI(linear matrix inequality) technique. Also, the sufficient condition can be rewritten as LMI form in terms of transformed variables through singular value decomposition, some changes of variables, and Schur complements. Therefore, the obtained non-fragile $H_{\infty}$ controller guarantees the asymptotic stability and disturbance attenuation of the closed loop singular systems within a prescribed degree. Moreover, the controller design method can be extended to the problem of robust and non-fragile $H_{\infty}$ controller design method for singular systems with parameter uncertainties. Finally, a numerical example is given to illustrate the design method.

An Output Feedback $H_\infty$ Controller Design for Linear Systems with Commensurate Time Delay (커멘슈레이트 시간지연을 갖는 선형시스템의 출력궤환 $H_\infty$ 제어기 설계)

  • Yoo, Seog-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.1-10
    • /
    • 2000
  • This paper deals with an H$_{\infty}$ output feedback control problem for linear systems with commensurate time delay in both state and input variables. The proposed output feedback controller also has commensurate time delay terms in the controller state. The controller can be synthesized based on the solution of the linear matrix inequalities(LMI) which can be easily solved using the convex optimization method. In order to demonstrate the efficacy of the proposed method, numerical examples are presented.

  • PDF

Robust $H_{\infty}$ Controller for State and Input Delayed Systems with Structured Uncertainties (구조화된 불확실성과 상태와 입력에 시간지연이 있는 시스템을 위한 강인 $H_{\infty}$ 제어기)

  • Lee, Joon-Hwa;Moon, Young-Soo;Kwon, Wook-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.338-342
    • /
    • 1997
  • 본 논문에서는 상태와 입력에 시간지연과 구조화된 불확실성이 있는 시스템을 위한 강인 H/sub .inf./ 제어기를 제안한다. 제안된 제안기는 시간지연의 크기에 관계없이 항상 불확실한 시스템을 안정화시키고, 또한 제한된 크기의 어떤 구조화된 불확실성에 대해서도 항상 폐루프 전달함수의 H/sub .inf./ 노옴의 크기를 주어진 레벨 이하로 줄인다. 제어기는 볼록 최적화 알고리즘을 이용한 LMI 문제를 풀어서 구한다.

  • PDF