• Title/Summary/Keyword: LENS 공정

Search Result 125, Processing Time 0.034 seconds

Materials for Spectacle lens cutting with Glass phase (유리상 첨가한 안경렌즈 절삭용 재료)

  • Lee, Young-II
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.145-148
    • /
    • 2001
  • SiC composites were developed by incorporating glass phase into SiC, in the light of improving mechanical properties of material for spectacle lens cutting. Specimens for spectacle lens cutting with glass phase as sintering additives have been fabricated by hot-pressing at $1810^{\circ}C$ for 2 hr under a pressure of 25 MPa. The fracture toughness and hardness of hot-pressed specimens were characterized and compared with previous works. Typical hardness and fracture toughness of materials for spectacle lens cutting were 12 GPa and $5.1MPa{\cdot}m^{1/2}$ respectively.

  • PDF

Polymerization of Hydrogel Contact Lens with High Oxygen Transmissibility (산소투과성이 뛰어난 Hydrogel 콘택트렌즈 합성)

  • Sung, A-Young;Kim, Tae-Hun;Kong, Jung-Il
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.1
    • /
    • pp.49-53
    • /
    • 2006
  • Acrylate -PDMS(Polydimethylsiloxane)-Urethane Prepolymer is synthesized through treating diisocynate, HEMA(2-hydroxyethylmethacrylate) and bis(hydroxyalkyl)terminated Poly(dimethylsiloxane) having high oxygen permeability under the DBTDL(Dibutylitin dilaurate) catalyst. Modification of HEMA on bis(hydroxyalkyl)terminated Poly(dimethylsiloxane) is to be able to polymerize with other contact lens materials. And modification of urethane on bis(hydroxyalkyl)terminated Poly(dimethylsiloxane) is to increase elastic property and oxygen transmissibility. This material is analyzed by FT-IR and also will be used to make hydrogel contact lens.

  • PDF

Design of Feed System and Process Conditions for Automobile Lamp Garnish Lens with Injection Molding Analysis (사출성형 해석을 이용한 자동차 램프 가니쉬 렌즈의 유동기구 및 공정조건의 설계)

  • Park, Jong-Cheon;Yu, Man-Jun;Park, Ki-Yoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, we design the feed system and process conditions for a lamp garnish lens of an automobile. For this purpose, four design alternatives are presented and injection molding simulation analyses are performed. The optimal feed system is selected by considering the formability of the product and the cost of mold manufacture. The product formability is assessed by the weld line, warpage, sink mark and the maximum injection pressure, whereas the mold-making cost is estimated by the number of valve gates in the hot runner system. To improve the product formability, process conditions are optimized using an experimental design approach named one-factor-at-a-time. No weld line is generated as a result of the optimization. In addition, it is found the warpage and sink mark are reduced while the maximum injection pressure is increased, compared with those before the optimization.

A Study on Water Droplet Lens Effect of UV Laser Micromachining Process (UV 레이저 미세 가공공정에서의 물 액적 렌즈 효과에 관한 연구)

  • Shin, Bo-Sung;Lee, Jung-Han
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.773-777
    • /
    • 2012
  • Recently UV laser micromachining processes is widely introduced to meet the needs of advanced components of IT, BT and ET industries. Due to the characteristics of non-contact and high-speed laser processing, UV laser micromachining is applied to manufacture very thin substrate such as polymer, metals and composite. These minimum line width obtained by UV laser micromachining is generally determined from laser wavelength, optical lens and its numerical aperture. In this paper we will show the lens effect of water droplet on the surface of workpiece to reduce the line width when UV laser light is irradiated and focused through the water droplet. Because of the refraction effect generated by the semi-spherical or spherical shape of water droplet, we can find smaller line width. And water droplet could not only protect thermal deformation, but also carry away burr around micro dent. Firstly fundamental theory of minimum line width was derived from relationship between the geometry of water droplet and laser light trace, and then experimental and simulation results will be finally compared to verify the effectiveness of water droplet lens effect of UV laser micromachining process.

Numerical Analysis for the Injection Molding of an Aspheric Lens for a Photo Pick-up Device (광픽업용 비구면 렌즈 사출성형 공정의 수치해석)

  • 박근;한철엽
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.163-170
    • /
    • 2004
  • In order to produce high-quality optical components, aspheric lenses have been widely applied in recent years. An aspheric lens consists of aspheric surfaces instead of spherical ones, which causes difficulty in the design process as well as the manufacturing procedure. Although injection molding is widely used to fabricate optical lenses owing to its high productivity, there remains lots of difficulty to determine appropriate mold design factors and injection molding parameters. In the injection molding fields, computer simulation has been effectively applied to analyze processes based on the shell analysis so far. Considering the geometry of optical lenses, however, numerical analysis based on solid elements has been reported as more reliable approach than shell -based one. The present work covers three-dimensional injection molding simulation using MP1/Flow3D and relevant deformation analysis of an injection molded plastic lens based on solid elements. Numerical analysis has been applied to the injection molding processes of an aspheric lens for a photo pick-up device. The reliability of the proposed approach has been verified in comparison with the experiments.

Simulation estimate of micro fresnel lens (Micro fresnel lens 시뮬레이션 평가)

  • Shin, S.Y.;Park, H.D.;Park, K.B.;Kim, K.N.;Lee, B.N.;Jeong, S.W.;Kim, I.H.;Moon, H.C.;Shin, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1148-1150
    • /
    • 1999
  • Fresnel lens는 zone plate에 비해 공정은 쉬우나 회절 효율이 높은 것으로 알려져 있다. 본 논문에서는 micro fresnel lens를 설계하고 각각의 회절 효율 및 focal size를 계산하였으며. 비교적 공정이 용이한 계단 모양의 fresnel lens를 설계하여 회절 효율과 focal size를 계산하였다. 그리고, 광원의 파장과 초점거리에 따른 lens의 회절 효율을 비교하였으며, 계단의 수에 따른 회절 효율도 비교하였다.

  • PDF

A Study on the Anti-Reflection Coating Effects of Polymer Eyeglasses Lens (폴리머 안경렌즈의 반사방지 코팅효과 연구)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.216-221
    • /
    • 2017
  • Reducing optical reflection in the visible light range, in order to increase the share of transmitted light and avoid the formation of ghost images in imaging, is important for polymer lens applications. In this study, polymer lenses with refractive indices of n=1.56, 1.60, and 1.67 were fabricated by the injection-molding method with a polymer lens monomer, dibutyltin dichloride as the catalyst and an alkyl phosphoric ester as the release agent. To investigate their anti-reflection (AR) effects, various AR coating structures, viz. a multi-layer AR coating structure, tri-layer AR coating structure with a discrete approximation Gaussian gradient-index profile, and tri-layer AR coating structure with a quarter-wavelength approximation, were designed and coated on the polymer lens by an E-beam evaporation system. The optical properties of the polymer lenses were characterized by UV-visible spectrometry. The material properties of the thin films, refractive index and surface roughness, were analyzed by ellipsometry and AFM, respectively. The most effective AR coating structure of the polymer lens with low refractive index, n=1.56, was the both side coating of multi-layer AR coating structure. However, both side coating of the tri-layered discrete approximation Gaussian gradient-index profile AR coating structure gave comparable results to the both side coating of the multi-layer AR coating structure for the polymer lens with a high refractive index of n=1.67.