Browse > Article
http://dx.doi.org/10.5762/KAIS.2017.18.1.216

A Study on the Anti-Reflection Coating Effects of Polymer Eyeglasses Lens  

Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.18, no.1, 2017 , pp. 216-221 More about this Journal
Abstract
Reducing optical reflection in the visible light range, in order to increase the share of transmitted light and avoid the formation of ghost images in imaging, is important for polymer lens applications. In this study, polymer lenses with refractive indices of n=1.56, 1.60, and 1.67 were fabricated by the injection-molding method with a polymer lens monomer, dibutyltin dichloride as the catalyst and an alkyl phosphoric ester as the release agent. To investigate their anti-reflection (AR) effects, various AR coating structures, viz. a multi-layer AR coating structure, tri-layer AR coating structure with a discrete approximation Gaussian gradient-index profile, and tri-layer AR coating structure with a quarter-wavelength approximation, were designed and coated on the polymer lens by an E-beam evaporation system. The optical properties of the polymer lenses were characterized by UV-visible spectrometry. The material properties of the thin films, refractive index and surface roughness, were analyzed by ellipsometry and AFM, respectively. The most effective AR coating structure of the polymer lens with low refractive index, n=1.56, was the both side coating of multi-layer AR coating structure. However, both side coating of the tri-layered discrete approximation Gaussian gradient-index profile AR coating structure gave comparable results to the both side coating of the multi-layer AR coating structure for the polymer lens with a high refractive index of n=1.67.
Keywords
anti-reflection; coating structure; injection-mold; polymer lens; vacuum evaporation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. Spiller, I. Haller, R. Feder, J. E. E. Baglin, and W. N. Hammer, "Gradient-index AR Surfaces Produce by Ion Implantation on Plastic Materials", Applied Optics, vol. 19, pp. 3022-3026, 1980. DOI: http://dx.doi.org/10.1364/AO.19.003022   DOI
2 P. Yeh and S. Sari, "Optical Properties of Stratified Media with Exponentially Graded Refractive Index", Applied Optics, vol. 22, pp. 4142-4145, 1983. DOI: http://dx.doi.org/10.1364/AO.22.004142   DOI
3 Y. Li, J. Zhang, and B. Yang, "Antireflective Surfaces Based on Biomimetic Nanopillared Arrays", Nano Today, vol. 5, pp. 117-127, 2010. DOI: http://dx.doi.org/10.1016/j.nantod.2010.03.001   DOI
4 K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, "Nano-Tailoring the Surface Structure for the Monolithic High-Performance Antireflection Polymer Film", Advanced Materials, vol. 22, pp. 3713-3818, 2010. DOI: http://dx.doi.org/10.1002/adma.201001678   DOI
5 K-C. Kim, "Anti-Reflection Coating Technology Based High Refractive Index Lens with Ultra-Violet Rays Blocking Function", Journal of the Korea Academia-Industrial cooperation Society, vol. 17, No. 12, 482-487, 2016. DOI: http://dx.doi.org/10.5762/KAIS.2016.17.12.482   DOI
6 W. Glaubitt, and P. Lobmann, "Antireflective Coatings Prepared by Sol-Gel Processing; Principles and Applications", Journal of the European Ceramic Society, vol. 32, pp. 2995-2999, 2012. DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2012.02.032   DOI
7 J. Moghal, S. Reid, L. Hagerty, M. Gardener, and G. Wakefield, "Development of Single Layer Nanoparticle Anti-reflection Coating for Polymer Substrates", Thin Solid Films, vol. 534, pp. 541-545, 2013. DOI: http://dx.doi.org/10.1016/j.tsf.2013.03.005   DOI
8 E. Hecht, "Optics", p. 375, Addison-Wesley Publishing Company, 1987.
9 K-C. Kim, "Effective Graded Refractive-ndex Anti-reflection Coating for High Refractive-index Ophthalmic Lenses", Materials Letters, vol. 160, pp. 158-161, 2015. DOI: http://dx.doi.org/10.1016/j.matlet.2015.07.108   DOI
10 J. Moghal, J. Kobler, J. Sauer, J. Best, M. Gardener, A. A. R. Watt, and G. Wakefield, "High-Performance, Single-Layer Antireflective Optical Coatings Comprising Mesoporous Silica Nanoparticles', ACS Applied Materials & Interfaces, vol. 4, pp. 854-859, 2012. DOI: http://dx.doi.org/10.1021/am201494m   DOI
11 H. G. Shanbhogue, C. L. Nagendra, M. N. Annapurna, and S. A. Kumar, "Multilayer Antireflection Coatings for the Visible and Near-infrared Regions", Applied Optics, vol. 36, pp. 6339-6351, 1997. DOI: http://dx.doi.org/10.1364/AO.36.006339   DOI
12 U. Schulz, "Review of Modern Techniques to Generate Antireflective Properties on Thermoplastic Polymers", Applied Optics, vol. 45, pp. 1608-1618, 2006. DOI: http://dx.doi.org/10.1364/AO.45.001608   DOI
13 M. Chen, H-C Chang, A. S. P. Chang, S-Y. Lin, J-Q. Xi, and E. F. Schubert, "Design of Optical Path for Wide-angle Gradient-index Antireflection Coatings", Applied Optics, vol. 46, pp. 6533-6538, 2007. DOI: http://dx.doi.org/10.1364/AO.46.006533   DOI
14 W. H. Southwell, "Gradient-index Antireflection Coatings", Optics Letters, vol. 8, pp. 584-586, 1983. DOI: http://dx.doi.org/10.1364/OL.8.000584   DOI
15 S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, "Nanostructured Multilayer Graded-index Antireflection Coating for Si Solar Cells with Broadband and Omnidirectional Characteristics", Applied Physics Letters, vol. 93, p. 251108, 2008. DOI: http://dx.doi.org/10.1063/1.3050463   DOI
16 M-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim. E. F. Schubert, and S-Y. Lin, "Realization of near-perfect antireflection coating for silicon solar energy utilization", Optics Letters, vol. 33, pp. 2527-2529, 2008. DOI: http://dx.doi.org/10.1364/OL.33.002527   DOI