DOI QR코드

DOI QR Code

A Study on the Anti-Reflection Coating Effects of Polymer Eyeglasses Lens

폴리머 안경렌즈의 반사방지 코팅효과 연구

  • Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
  • 김기출 (목원대학교 신소재화학공학과)
  • Received : 2016.10.07
  • Accepted : 2017.01.06
  • Published : 2017.01.31

Abstract

Reducing optical reflection in the visible light range, in order to increase the share of transmitted light and avoid the formation of ghost images in imaging, is important for polymer lens applications. In this study, polymer lenses with refractive indices of n=1.56, 1.60, and 1.67 were fabricated by the injection-molding method with a polymer lens monomer, dibutyltin dichloride as the catalyst and an alkyl phosphoric ester as the release agent. To investigate their anti-reflection (AR) effects, various AR coating structures, viz. a multi-layer AR coating structure, tri-layer AR coating structure with a discrete approximation Gaussian gradient-index profile, and tri-layer AR coating structure with a quarter-wavelength approximation, were designed and coated on the polymer lens by an E-beam evaporation system. The optical properties of the polymer lenses were characterized by UV-visible spectrometry. The material properties of the thin films, refractive index and surface roughness, were analyzed by ellipsometry and AFM, respectively. The most effective AR coating structure of the polymer lens with low refractive index, n=1.56, was the both side coating of multi-layer AR coating structure. However, both side coating of the tri-layered discrete approximation Gaussian gradient-index profile AR coating structure gave comparable results to the both side coating of the multi-layer AR coating structure for the polymer lens with a high refractive index of n=1.67.

폴리머 안경렌즈를 제조할 때 가시광선 영역에서 투과되는 빛을 증가시키고, 안경렌즈 표면에 형성되는 허상을 방지하는 반사방지 기능은 매우 중요하다. 본 연구에서는 굴절률 1.56, 1.60 및 1.67을 갖는 안경렌즈를 폴리머 렌즈 모노머 및 이염화 이부틸 주석 촉매제, 알킬 인산 에스터 이형제 등의 혼합물을 인젝션 몰드 방법으로 열중합 공정을 적용하여 제조하였다. 폴리머 안경렌즈 표면에서의 반사방지 효과를 조사하기 위하여 다층 박막 반사방지 코팅 구조(양면 또는 단면 코팅), 3층 박막의 Gaussian gradient-index profile 불연속 근사 반사방지 코팅 구조, 3층 박막의 quarter-wavelength 근사 반사방지코팅 구조 등 다양한 반사방지 코팅 구조를 설계하였고, E-beam 증착 시스템을 이용하여 열중합공정으로 제조된 폴리머 안경렌즈에 각각 코팅하였다. 폴리머 안경렌즈의 광학적 특성은 UV-visible spectrometer로 분석하였다. 반사방지 코팅 층을 구성하는 박막의 굴절률, 표면 거칠기 등의 소재 특성은 Ellipsometer와 원자힘 현미경(AFM)으로 분석하였다. 분석결과, 굴절률 1.56의 낮은 굴절률을 갖는 폴리머 안경렌즈에서 가장 효과적인 반사방지 코팅 구조는 다층 박막 반사방지 코팅 구조의 양면코팅이었다. 하지만 굴절률 1.67의 고굴절률 안경렌즈에 대해서는 3층 박막의 Gaussian gradient-index profile 불연속 근사반사방지 코팅 구조의 양면 코팅도 다층박막 반사방지 코팅구조의 양면코팅에 상응하는 반사방지 효과를 나타내었다.

Keywords

References

  1. M-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim. E. F. Schubert, and S-Y. Lin, "Realization of near-perfect antireflection coating for silicon solar energy utilization", Optics Letters, vol. 33, pp. 2527-2529, 2008. DOI: http://dx.doi.org/10.1364/OL.33.002527
  2. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, "Nanostructured Multilayer Graded-index Antireflection Coating for Si Solar Cells with Broadband and Omnidirectional Characteristics", Applied Physics Letters, vol. 93, p. 251108, 2008. DOI: http://dx.doi.org/10.1063/1.3050463
  3. W. Glaubitt, and P. Lobmann, "Antireflective Coatings Prepared by Sol-Gel Processing; Principles and Applications", Journal of the European Ceramic Society, vol. 32, pp. 2995-2999, 2012. DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2012.02.032
  4. J. Moghal, S. Reid, L. Hagerty, M. Gardener, and G. Wakefield, "Development of Single Layer Nanoparticle Anti-reflection Coating for Polymer Substrates", Thin Solid Films, vol. 534, pp. 541-545, 2013. DOI: http://dx.doi.org/10.1016/j.tsf.2013.03.005
  5. K-C. Kim, "Effective Graded Refractive-ndex Anti-reflection Coating for High Refractive-index Ophthalmic Lenses", Materials Letters, vol. 160, pp. 158-161, 2015. DOI: http://dx.doi.org/10.1016/j.matlet.2015.07.108
  6. J. Moghal, J. Kobler, J. Sauer, J. Best, M. Gardener, A. A. R. Watt, and G. Wakefield, "High-Performance, Single-Layer Antireflective Optical Coatings Comprising Mesoporous Silica Nanoparticles', ACS Applied Materials & Interfaces, vol. 4, pp. 854-859, 2012. DOI: http://dx.doi.org/10.1021/am201494m
  7. E. Hecht, "Optics", p. 375, Addison-Wesley Publishing Company, 1987.
  8. H. G. Shanbhogue, C. L. Nagendra, M. N. Annapurna, and S. A. Kumar, "Multilayer Antireflection Coatings for the Visible and Near-infrared Regions", Applied Optics, vol. 36, pp. 6339-6351, 1997. DOI: http://dx.doi.org/10.1364/AO.36.006339
  9. U. Schulz, "Review of Modern Techniques to Generate Antireflective Properties on Thermoplastic Polymers", Applied Optics, vol. 45, pp. 1608-1618, 2006. DOI: http://dx.doi.org/10.1364/AO.45.001608
  10. M. Chen, H-C Chang, A. S. P. Chang, S-Y. Lin, J-Q. Xi, and E. F. Schubert, "Design of Optical Path for Wide-angle Gradient-index Antireflection Coatings", Applied Optics, vol. 46, pp. 6533-6538, 2007. DOI: http://dx.doi.org/10.1364/AO.46.006533
  11. W. H. Southwell, "Gradient-index Antireflection Coatings", Optics Letters, vol. 8, pp. 584-586, 1983. DOI: http://dx.doi.org/10.1364/OL.8.000584
  12. E. Spiller, I. Haller, R. Feder, J. E. E. Baglin, and W. N. Hammer, "Gradient-index AR Surfaces Produce by Ion Implantation on Plastic Materials", Applied Optics, vol. 19, pp. 3022-3026, 1980. DOI: http://dx.doi.org/10.1364/AO.19.003022
  13. P. Yeh and S. Sari, "Optical Properties of Stratified Media with Exponentially Graded Refractive Index", Applied Optics, vol. 22, pp. 4142-4145, 1983. DOI: http://dx.doi.org/10.1364/AO.22.004142
  14. Y. Li, J. Zhang, and B. Yang, "Antireflective Surfaces Based on Biomimetic Nanopillared Arrays", Nano Today, vol. 5, pp. 117-127, 2010. DOI: http://dx.doi.org/10.1016/j.nantod.2010.03.001
  15. K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, "Nano-Tailoring the Surface Structure for the Monolithic High-Performance Antireflection Polymer Film", Advanced Materials, vol. 22, pp. 3713-3818, 2010. DOI: http://dx.doi.org/10.1002/adma.201001678
  16. K-C. Kim, "Anti-Reflection Coating Technology Based High Refractive Index Lens with Ultra-Violet Rays Blocking Function", Journal of the Korea Academia-Industrial cooperation Society, vol. 17, No. 12, 482-487, 2016. DOI: http://dx.doi.org/10.5762/KAIS.2016.17.12.482