• 제목/요약/키워드: LED Driver

Search Result 286, Processing Time 0.029 seconds

A Study on the improvement of Current Control Accuracy of High Power LED Driver (고전력 LED 구동장치의 전류제어 정밀도 향상에 관한 연구)

  • Park, Jeong-Hoon;Seo, Kang-Myun;Kim, Jin-Keun;Hong, Sung-Hoon;Kang, Moon-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.508-510
    • /
    • 2005
  • In this paper, we have studied for the current control method with high accuracy for the high power LED driver that is necessary to the lighting system using LEDs. The control performance of LED driver can be improved with the adjustment of current control boundary by introducing D/A converters for setting high-offset and low-offset. And microprocessor (ATmega128) and D/A converter with 8 bits resolution are used in the proposed driver so that LED's illumination can be remotely controlled by serial communication on the spot or by key input. In the results of performance tests, we confirmed that the proposed control method is superior to the conventional control method using op-amps.

  • PDF

Design of the Power-LED Driver for High Speed Dimming Control (고속 디밍제어를 위한 고출력-LED 드라이버 설계)

  • Lee, Keon;Kang, Woo-Seong;Jung, Tae-Jin;Yoon, Kwang-Sub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.128-135
    • /
    • 2013
  • This paper presents a high dimming ratio Power-LED driver IC with high power which is capable of controlling LEDs. In order to accomplish a high dimming ratio LED driver, the preloading inductor current methodology is proposed for the power stage of the proposed method to achieve the fast transient response time during the Power-LED load switching. The information containing the current flowing on the LEDs can be utilized to predict the amount of the current on the inductor. The minimum LED current rising time of existing high dimming ratio Power-LED driver is limited by $3{\mu}s$, however that of the proposed high dimming ratio Power-LED driver is reduced about 1/10. The LED driver is implemented with 0.35um 60V BCDMOS 2-poly 4-metal process. The measurement results show that the proposed LED driver system features the minimum rising time as small as 240ns at the dimming frequency of 1KHz with a 12V of input voltage, nine white LEDs and 353mA of LED current. The LED rising time and power conversion efficiency of the chip are measured to be 240ns and 93.72%, respectively.

Study on Thermal Analysis for Optimization LED Driver ICs

  • Chung, Hun-Suk
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.59-61
    • /
    • 2017
  • This research was analyzed thermal characteristics that was appointed disadvantage when smart LED driver ICs was packaged and we applied extracted thermal characteristics for optimal layout design. We confirmed reliability of smart LED driver ICs package without additional heat sink. If the package is not heat sink, we are possible to minimize package. For extracting thermal loss due to overshoot current, we increased driver current by two and three times. As a result of experiment, we obtained 22 mW and 49.5 mW thermal loss. And we obtained optimal data of 350 mA driver current. It is important to distance between power MOSFET and driver ICs. If the distance was increased, the temperature of package was decreased. And so we obtained optimal data of 3.7 mm distance between power MOSFET and driver ICs. Finally, we fabricated real package and we analyzed the electrical characteristics. We obtained constant 35 V output voltage and 80% efficiency.

A New LED Current Balancing Scheme Using Double-Step-Down DC-DC Converter (이중강압 DC-DC 컨버터를 이용한 새로운 LED 전류 밸런싱 기법)

  • Kim, Kisu;Do, Duc Tuan;Kim, Heung-Geun;Cha, Honnyong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1474-1480
    • /
    • 2017
  • This paper presents a new LED current balancing scheme using double-step-down dc-dc converter. With the proposed structure, the two channel LED currents are automatically balanced without using any dedicated control or auxiliary circuit. In addition, switching loss of the switching devices in the proposed LED driver is lower than that of the conventional buck LED driver. To verify the operation of the proposed LED driver, a hardware prototype is built and tested with different number of LED.

A White-LED Driver IC for Mobile Applications (모바일용 White-LED Driver IC)

  • Ko, Young-Seok;Park, Shi-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.39-40
    • /
    • 2009
  • This paper presents a white-LED driver IC for a mobile application. It uses a high efficiency current mode boost converter method for a low voltage application. For a LED drive, it provides a PWM(Pulse Width Modulation) and analog dimming function. The device was designed and fabricated using 0.35um BCD process. The evaluated waveforms for an implemented IC show promising results.

  • PDF

Study on the Design of Power MOSFET for Smart LED Driver ICs Package (스마트 LED Driver ICs 패키지용 700 V급 Power MOSFET의 설계 최적화에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.75-78
    • /
    • 2016
  • This research was designed 700 level power MOSFET for smart LED driver ICs package. And we analyzed electrical characteristics of the power MOSFET as like breakdown voltage, on-resistance and threshold voltage. Because this research is important optimal design for smart LED ICs package, we designed power MOSFET with design and process parameter. As a result of this research, we obtained $60{\mu}m$ N-drift layer depth, 791.29 V breakdown voltage, $0.248{\Omega}{\cdot}cm^2$ on resistance and 3.495 V threshold voltage. We will use effectively this device for smart LED driver ICs package.

Slope Compensation Design of Buck AC/DC LED Driver Based on Discrete-Time Domain Analysis (이산 시간 영역 해석에 기반한 벅 AC/DC LED 구동기의 슬로프 보상 설계)

  • Kim, Marn-Go
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.207-214
    • /
    • 2019
  • In this study, discrete-time domain analysis is proposed to investigate the input current of a buck AC/DC light-emitting diode (LED) driver. The buck power factor correction converter can operate in both discontinuous conduction mode (DCM) and continuous conduction mode (CCM). Two discontinuous and two continuous conduction operating modes are possible depending on which event terminates the conduction of the main switch in a switching cycle. All four operating modes are considered in the discrete-time domain analysis. The peak current-mode control with slope compensation is used to design a low-cost AC/DC LED driver. A slope compensation design of the buck AC/DC LED driver is described on the basis of a discrete-time domain analysis. Experimental results are presented to confirm the usefulness of the proposed analysis.

A dual-loop boost-converter LED driver IC with temperature compensation (온도 보상 및 듀얼 루프를 이용한 부스트 컨버터 LED 드라이버 IC)

  • Park, Ji-Hoon;Yoon, Seong-Jin;Hwang, In-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.6
    • /
    • pp.29-36
    • /
    • 2015
  • This paper presents an LED backlight driver IC consisting of three linear current regulators and an output-voltage regulation loop with a self-adjustable reference voltage. In the proposed LED driver, the output voltage is controlled by dual feedback loops. The first loop senses and controls the output voltage, and the second loop senses the voltage drop of the linear current regulator and adjusts the reference voltage. With these feedback loops, the voltage drop of the linear current regulator is maintained at a minimum value, at which the driver efficiency is maximized. The output of the driver is a three-channel LED setup with four LEDs in each channel. The luminance is adjusted by the PWM dimming signal. The proposed driver is designed by a $0.35-{\mu}m$ 60-V high-voltage process, resulting in an experimental maximum efficiency of approximately 85%.

Long-Lasting and Highly Efficient TRIAC Dimming LED Driver with a Variable Switched Capacitor

  • Lee, Eun-Soo;Choi, Bo-Hwan;Nguyen, Duy Tan;Choi, Byeung-Guk;Rim, Chun-Taek
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1268-1276
    • /
    • 2016
  • A triode for alternating current (TRIAC) dimming light emitting diode (LED) driver, which adopts a variable switched capacitor for LED dimming and LED power regulation, is proposed in this paper. The proposed LED driver is power efficient, reliable, and long lasting because of the TRIAC switch that serves as its main switch. Similar to previous TRIAC dimmers for lamps, turn-on timing of a TRIAC switch can be controlled by a volume resistor, which modulates the equivalent capacitance of the proposed variable switched capacitor. Thus, LED power regulation against source voltage variation and LED dimming control can be achieved by the proposed LED driver while meeting the global standards for power factor (PF) and total harmonic distortion (THD). The long life and high power efficiency of the proposed LED driver make it appropriate for industrial lighting applications, such as those for streets, factories, parking garages, and emergency stairs. The detailed analysis of the proposed LED driver and its design procedure are presented in this paper. A prototype of 80 W was fabricated and verified by experiments, which showed that the efficiency, PF, and THD at Vs = 220 V are 93.8%, 0.95, and 22.5%, respectively; 65 W of LED dimming control was achieved with the volume resistor, and the LED power variation was well mitigated below 3.75% for 190 V < Vs < 250 V.

4-Channel LED Current Balancing Scheme Using C-Fed Hybrid Quasi-Z-Source Converter (전류형 하이브리드 Quasi-Z-Source 컨버터를 이용한 4-채널 LED 전류 밸런싱 기법)

  • Hong, Daheon;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.66-73
    • /
    • 2021
  • This study presents a novel four-channel light-emitting diode (LED) current balancing topology using a current-fed hybrid quasi-Z-source converter. With the proposed structure, currents flowing through four LED strings are automatically balanced owing to the charge (amp-sec) balance condition on capacitors. Thus, automatic current balancing of the proposed driver is simple and precise. In addition, the proposed LED driver uses only one active switch and three diodes. The operating principle and characteristics of the proposed four-channel LED driver are analyzed in detail. To verify the operation of the proposed LED driver, a prototype is built and tested with different numbers of LEDs.