• Title/Summary/Keyword: LDPC Decoder

Search Result 127, Processing Time 0.025 seconds

Study of 8-PSK decoder based on iteration in DVB-S2 system (DVB-S2 시스템에서 반복 기반의 8-PSK 복호기 연구)

  • Kwon, Hae-chan;Kim, Tae-hun;Jung, Ji-won;Kim, Young-il;Lee, Seong-Ro
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.399-401
    • /
    • 2013
  • In this paper, we present the method to impove the performance by using iterative decoding in LDPC codes with 8-PSK modulation. Iterative decoding is the technique that improve the performance after the input signals of receiver are re-calculated by using the soft decision output of decoder. DVB-S2 system with 8-PSK modulation based on iterative decoding had a better performance than DVB-S2 with 8-PSK modulation over Gaussian channels.

  • PDF

Efficient Parallel Block-layered Nonbinary Quasi-cyclic Low-density Parity-check Decoding on a GPU

  • Thi, Huyen Pham;Lee, Hanho
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.210-219
    • /
    • 2017
  • This paper proposes a modified min-max algorithm (MMMA) for nonbinary quasi-cyclic low-density parity-check (NB-QC-LDPC) codes and an efficient parallel block-layered decoder architecture corresponding to the algorithm on a graphics processing unit (GPU) platform. The algorithm removes multiplications over the Galois field (GF) in the merger step to reduce decoding latency without any performance loss. The decoding implementation on a GPU for NB-QC-LDPC codes achieves improvements in both flexibility and scalability. To perform the decoding on the GPU, data and memory structures suitable for parallel computing are designed. The implementation results for NB-QC-LDPC codes over GF(32) and GF(64) demonstrate that the parallel block-layered decoding on a GPU accelerates the decoding process to provide a faster decoding runtime, and obtains a higher coding gain under a low $10^{-10}$ bit error rate and low $10^{-7}$ frame error rate, compared to existing methods.

Implementation of Dual-Diagonal Quasi-cyclic LDPC(Low Density Parity Check) decoder for Efficient Encoder (효율적 부호를 고려한 Dual-Diagonal Quasi-cyclic LDPC(Low Density Parity Check) 복호기의 구현)

  • Byun, Yong-Ki;Kim, Jong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2023-2024
    • /
    • 2006
  • 1962년 Gallager에 의해 처음 제안된 LDPC 부호는 복호를 수행하는 부호방식으로 패리티 행렬(H)의 대부분이 0으로 구성되어 복호시에 적은 연산량을 요구하며, shannon의 한계에 도달하는 복호 능력으로, 차세대 통신의 주된 부호 방식으로 고려되고 있다. 하지만, LDPC는 부호화에 있어서 여타 다른 부호방식에 비해 복잡한 특성을 가지고 있으므로, 이를 개선하기 위한 부호방식의 적용이 필요하다. 본 논문에서는 효율 적인 부호화를 위하여 Dual-diagonal H parity행렬을 구성 하고, 쉽게 부호 길이를 확장 할 수 있는 Quasi-Cyclic 방식을 적용한 복호기를 구현하였다.

  • PDF

A New LDPC Decoding Method of Error Correction Decoder for Distributed Video Coding (분산 동영상 압축 기법에 사용되는 LDPC 부호의 새로운 복호화 기법)

  • Lee, Sangwoo;Jang, Hwanseok;Park, Sang Ju
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.229-231
    • /
    • 2011
  • H.264/AVC와 같은 동영상 압축 기술은 동영상의 압축에 필요한 연산이 대부분 부호기에서 이루어진다. 반면에 분산 동영상 압축 기법은 정보 압축에 필요한 연산이 대부분 복호기에서 수행되는 구조를 가진다. 본 논문에서는 분산 동영상 압축 기법의 구성 요소 중 오류 정정 부호기와 복호기에 사용되는 오류 정정 부호 중 LDPC 부호의 성능을 향상 시킬 수 있는 새로운 복호 기법을 제안한다. 제안하는 기법을 적용하여 추가적인 연산 없이 LDPC 부호의 오류 정정 성능을 향상시킬 수 있었다.

  • PDF

Low Computational Algorithm for Estimating LLR in MIMO Channel (MIMO 채널에서 LLR 추정을 위한 저 계산량 알고리즘)

  • Park, Tae-Doo;Kim, Min-Hyuk;Kim, Chul-Sung;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2791-2797
    • /
    • 2010
  • In recent years, the goal of providing high speed wireless data services has generated a great amount of interest among the research community. Several researchers have shown that the capacity of the system, in the presence of flat Rayleigh fading, improves significantly with the use of combined MIMO and LDPC. To feed the soft values to LDPC decoder, the soft values must be calculated from multiple transmitter and receiver antennas in Rayleigh fading channel. It requires high computational complexity to get the soft symbols by increasing number of transmitter and receiver antennas. Therefore, this thesis proposed on effective algorithm for calculation of soft values from multiple antennas based on LLR. As result, This thesis shows that maximum 61% of computational complexity is reduced with a little loss of performance.

Efficient AT-Complexity Generator Finding First Two Minimum Values for Bit-Serial LDPC Decoding (비트-직렬 LDPC 복호를 위한 효율적 AT 복잡도를 가지는 두 최소값 생성기)

  • Lee, Jea Hack;Sunwoo, Myung Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.42-49
    • /
    • 2016
  • This paper proposes a low-complexity generator which finds the first two minimum values using bit-serial scheme. A low-complexity generator is an important part for low-area LDPC decoders based on the min-sum decoding algorithm because the hardware complexity of generators utilizes a significant portion of LDPC decoders. To reduce hardware complexity, bit-serial LDPC decoders has been studied. The generator of the existing bit-serial LDPC decoders can find only the first minimum value, and thus it leads to a BER performance degradation. The proposed generator using bit-serial scheme finds the first two minimum values. Hence, it can improve the BER performance. In addition, the area-time complexity of the proposed generator is lower than those of the existing generators finding the first two minima.

Performance Analysis on Various Design Issues of Quasi-Cyclic Low Density Parity Check Decoder (Quasi-Cyclic Low Density Panty Check 복호기의 다양한 설계 관점에 대한 성능분석)

  • Chung, Su-Kyung;Park, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.92-100
    • /
    • 2009
  • In this paper, we analyze the hardware architecture of Low Density Parity Check (LDPC) decoder using Log Likelihood Ration-Belief Propagation (LLR-BP) decoding algorithm. Various design issues that affect the decoding performance and the hardware complexity are discussed and the tradeoffs between the hardware complexity and the performance are analyzed. The message data for passing error probability is quantized to 7 bits and among them the fractional part is 4 bits. To maintain the decoding performance, the integer and fractional parts for the intrinsic information is 2 bits and 4 bits respectively. We discuss the alternate implementation of $\Psi$(x) function using piecewise linear approximation. Also, we improve the hardware complexity and the decoding time by applying overlapped scheduling.

Performance of a Coded Frequency Hopping OFDMA System with an Iterative Receiver in Uplink Cellular Environments (상향 링크 셀룰러 환경에서 반복 수신 기법을 적용한 부호화된 주파수 도약 OFDMA 시스템의 성능)

  • Kim, Yun-Hee;Kang, Sung-Kyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1108-1115
    • /
    • 2005
  • In this paper, we propose a practical iterative channel estimation and decoding method for an LDPC-coded frequency hopping OFDMA system in the uplink of a packet-based cellular system. In the method, the channel gain and noise variance are iteratively estimated with both pilot symbols and LDPC decoder outputs to provide more reliable decoding metrics in intercell interference (ICI) environments. In addition, the channel correlation coefficient is also estimated to select proper filter coefficients according to the channel variation rate. Through simulations under the various channel conditions and different receiver configurations, it is shown that the proposed iterative receiver improves the performance without boosting the pilot power and mitigates the adverse effects of the non-uniform ICI.

Self-Adaptive Termination Check of Min-Sum Algorithm for LDPC Decoders Using the First Two Minima

  • Cho, Keol;Chung, Ki-Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1987-2001
    • /
    • 2017
  • Low-density parity-check (LDPC) codes have attracted a great attention because of their excellent error correction capability with reasonably low decoding complexity. Among decoding algorithms for LDPC codes, the min-sum (MS) algorithm and its modified versions have been widely adopted due to their high efficiency in hardware implementation. In this paper, a self-adaptive MS algorithm using the difference of the first two minima is proposed for faster decoding speed and lower power consumption. Finding the first two minima is an important operation when MS-based LDPC decoders are implemented in hardware, and the found minima are often compressed using the difference of the two values to reduce interconnection complexity and memory usage. It is found that, when these difference values are bounded, decoding is not successfully terminated. Thus, the proposed method dynamically decides whether the termination-checking step will be carried out based on the difference in the two found minima. The simulation results show that the decoding speed is improved by 7%, and the power consumption is reduced by 16.34% by skipping unnecessary steps in the unsuccessful iteration without any loss in error correction performance. In addition, the synthesis results show that the hardware overhead for the proposed method is negligible.