• Title/Summary/Keyword: LDPC(Low Density Parity Code)

Search Result 125, Processing Time 0.028 seconds

Effects of LDPC Code on the BER Performance of MPSK System with Imperfect Receiver Components over Rician Channels

  • Djordjevic, Goran T.;Djordjevic, Ivan B.;Ivanis, Predrag N.
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.619-621
    • /
    • 2009
  • In this letter, we study the influence of receiver imperfections on bit error rate (BER) degradations in detecting low-density parity-check coded multilevel phase-shift keying signals transmitted over a Rician fading channel. Based on the analytical system model which we previously developed using Monte Carlo simulations, we determine the BER degradations caused by the simultaneous influences of stochastic phase error, quadrature error, in-phase-quadrature mismatch, and the fading severity.

Iterative Decoding for LDPC Coded MIMO-OFDM Systems with SFBC Encoding (주파수공간블록부호화를 적용한 MIMO-OFDM 시스템을 위한 반복복호 기법)

  • Sohn Insoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5A
    • /
    • pp.402-406
    • /
    • 2005
  • A multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system using low-density parity-check (LDPC) code and iterative decoding is presented. The iterative decoding is performed by combining the zero-forcing technique and LDPC decoding through the use of the 'turbo principle.' The proposed system is shown to be effective with high order modulation and outperforms the space frequency block code (SFBC) method with iterative decoding.

An analysis of optimal design conditions of LDPC decoder for IEEE 802.11n Wireless LAN Standard (IEEE 802.11n 무선랜 표준용 LDPC 복호기의 최적 설계조건 분석)

  • Jung, Sang-Hyeok;Na, Young-Heon;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.939-947
    • /
    • 2010
  • The LDPC(Low-Density Parity-Check) code, which is one of the channel encoding methods in IEEE 802.11n wireless LAN standard, has superior error-correcting capabilities. Since the hardware complexity of LDPC decoder is high, it is very important to take into account the trade-offs between hardware complexity and decoding performance. In this paper, the effects of LLR(Log-Likelihood Ratio) approximation on the performance of MSA(Min-Sum Algorithm)-based LDPC decoder are analyzed, and some optimal design conditions are derived. The parity check matrix with block length of 1,944 bits and code rate of 1/2 in IEEE 802.11n WLAN standard is used. In the case of $BER=10^{-3}$, the $E_b/N_o$ difference between LLR bit-widths (6,4) and (7,5) is 0.62 dB, and $E_b/N_o$ difference for iteration cycles 6 and 7 is 0.3 dB. The simulation results show that optimal BER performance can be achieved by LLR bit-width of (7,5) and iteration cycle of 7.

High-Throughput QC-LDPC Decoder Architecture for Multi-Gigabit WPAN Systems (멀티-기가비트 WPAN 시스템을 위한 고속 QC-LDPC 복호기 구조)

  • Lee, Hanho;Ajaz, Sabooh
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.104-113
    • /
    • 2013
  • A high-throughput Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) decoder architecture is proposed for 60GHz multi-gigabit wireless personal area network (WPAN) applications. Two novel techniques which can apply to our selected QC-LDPC code are proposed, including a four block-parallel layered decoding technique and fixed wire network. Two-stage pipelining and four block-parallel layered decoding techniques are used to improve the clock speed and decoding throughput. Also, the fixed wire network is proposed to simplify the switch network. A 672-bit, rate-1/2 QC-LDPC decoder architecture has been designed and implemented using 90-nm CMOS standard cell technology. Synthesis results show that the proposed QC-LDPC decoder requires a 794K gate and can operate at 290 MHz to achieve a data throughput of 3.9 Gbps with a maximum of 12 iterations, which meet the requirement of 60 GHz WPAN applications.

Study on Low Density Parity Check Coded OFDM on Fading channel (페이딩 채널에서 LDPC 부호화 OFDM에 대한 연구)

  • Kang, Hee-Hoon;Lee, Young-Jong;Han, Won-Ok
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.3
    • /
    • pp.51-56
    • /
    • 2005
  • To improve the BER of OFDM on a fading channel, a low-density parity check coded OFDM system is proposed in this paper. LDPC codes are decoded with Sum-Product or Belief Propagation Algorithm known by probability propagation algorithm. When LDPC codes are applied to OFDM system, the BER performance is dependant on the iteration number of decoding. To improve the spectral efficiency, multi-level modulations are used in mobile communication system. But, It is not clear how to decode LDPC code used in OFDM with multi-level modulations. In the paper, a decoding algorithm is described for LDPC coded OFDM with MPSK. When use the proposed decoding algorithm, we get the good BER for AWGN and a Fading Channel. Simulation results show that the proposed decoding algorithm is confirmed LDPC coded OFDM with MPSK.

An Improved Decoding Scheme of LCPC Codes (LCPC 부호의 개선된 복호 방식)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.430-435
    • /
    • 2018
  • In this paper, an improved decoding scheme for low-complexity parity-check(LCPC) code with small code length is proposed. The LCPC code is less complex than the turbo code or low density parity check(LDPC) code and requires less memory, making it suitable for communication between internet-of-things(IoT) devices. The IoT devices are required to have low complexity due to limited energy and have a low end-to-end delay time. In addition, since the packet length to be transmitted is small and the signal processing capability of the IoT terminal is small, the LCPC coding system should be as simple as possible. The LCPC code can correct all single errors and correct some of the two errors. In this paper, the proposed decoding scheme improves the bit error rate(BER) performance without increasing the complexity by correcting both errors using the soft value of the modulator output stage. As a result of the simulation using the proposed decoding scheme, the code gain of about 1.1 [dB] was obtained at the bit error rate of $10^{-5}$ compared with the existing decoding method.

Iterative Reliability-Based Modified Majority-Logic Decoding for Structured Binary LDPC Codes

  • Chen, Haiqiang;Luo, Lingshan;Sun, Youming;Li, Xiangcheng;Wan, Haibin;Luo, Liping;Qin, Tuanfa
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.339-345
    • /
    • 2015
  • In this paper, we present an iterative reliability-based modified majority-logic decoding algorithm for two classes of structured low-density parity-check codes. Different from the conventional modified one-step majority-logic decoding algorithms, we design a turbo-like iterative strategy to recover the performance degradation caused by the simply flipping operation. The main computational loads of the presented algorithm include only binary logic and integer operations, resulting in low decoding complexity. Furthermore, by introducing the iterative set, a very small proportion (less than 6%) of variable nodes are involved in the reliability updating process, which can further reduce the computational complexity. Simulation results show that, combined with the factor correction technique and a well-designed non-uniform quantization scheme, the presented algorithm can achieve a significant performance improvement and a fast decoding speed, even with very small quantization levels (3-4 bits resolution). The presented algorithm provides a candidate for trade-offs between performance and complexity.

Evaluation of soft iterative decoder with run length limited code in optical storage system

  • 김기현;한성휴;심재성;박현수;박인식
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.99-102
    • /
    • 2002
  • In this work, we evaluated the performance of soft iterative decoder with soft block decoder in optical storage system. Because optical storage system requires run- length limited code in general, adaptation of the soft decoders such as turbo code or LDPC(low density parity check code) is difficult without soft block decoders. The performance of the overall optical detection system is evaluated and the simplified channel detection is also proposed.

  • PDF

Beyond-IMT-2000 부호화 기법

  • 신민호;임은정;송홍엽;김동구
    • Information and Communications Magazine
    • /
    • v.18 no.6
    • /
    • pp.74-91
    • /
    • 2001
  • 본 고에서는 통신 시스템에 응용되고 있는 블록부호에 대한 소개와, IMT-2000 시스템의 표준화에서 채널 부호화 기법으로 규격에 반영된 길쌈부호(Convolutional code) 및 터보부호(Turbo code)에 대하여 소개하고, 현재 3세대 이동통신 표준화에서 논의중인 Hybrid ARQ(Adaptive Modulation and Coding), AMC(Adaptive Modulation and Coding) 기술에 대하여 설명한다. 그리고, 고속의 데이터 전송을 요하는 4세대 이동통신 시스템의 채널 부호화 기술로 현재 활발히 연구가 이루어지고 있는 Space-Time Code 및 LDPC(Low Density Parity Check Code)에 대해 소개하고, 차세대 이동통신 시스템의 채널 부호화 기술 전반에 대하여 전망한다.

  • PDF

Low Computational Algorithm for Estimating LLR in MIMO Channel (MIMO 채널에서 LLR 추정을 위한 저 계산량 알고리즘)

  • Park, Tae-Doo;Kim, Min-Hyuk;Kim, Chul-Sung;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2791-2797
    • /
    • 2010
  • In recent years, the goal of providing high speed wireless data services has generated a great amount of interest among the research community. Several researchers have shown that the capacity of the system, in the presence of flat Rayleigh fading, improves significantly with the use of combined MIMO and LDPC. To feed the soft values to LDPC decoder, the soft values must be calculated from multiple transmitter and receiver antennas in Rayleigh fading channel. It requires high computational complexity to get the soft symbols by increasing number of transmitter and receiver antennas. Therefore, this thesis proposed on effective algorithm for calculation of soft values from multiple antennas based on LLR. As result, This thesis shows that maximum 61% of computational complexity is reduced with a little loss of performance.