• Title/Summary/Keyword: LDH assay

Search Result 244, Processing Time 0.032 seconds

Evaluation of Safety with Astragali Radix : Ames, Rec and umu Assays (Ames, Rec 및 umu Assay를 이용한 황기의 안전성평가)

  • Shon, Yun-Hee;Nam, Kyung-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.1 s.132
    • /
    • pp.80-85
    • /
    • 2003
  • Water extract from Astragali Radix (AR) was tested for the safety using Ames, Bacillus subtilis Rec, and umu gene expression mutagenicity tests. Mutagenic activity in any assays we tested was not found. In Ames test, Salmonella typhimurium TA98 and TA 100 were used to identify mutagenic property, and the number of histidine revertants was measured. In the Recassay, Bacillus subtilis ${H-17(Rec^+)\;and\;M-45(Rec^-)}$ strains were used to test DNA damage activity. In the SOS umu test, Salmonella typhimurium TA1535 containing plasmid pSK1002 was used as a test strain, and we monitored the levels of umu operon expression by measuring the ${\beta}-galactosidase$ activity. From the results, there was no DNA damage and mutagenicity of AR. Hepatotoxicity of AR to female ICR mice was also monitored by the measurements of s-GOT, s-GPT, LDH activities after oral feeding for 15 days. AR was not shown any significant changes of s-GOT, s-GPT and LDH activities in mice sera.

The Effect of Woohwangcheongsim-won for Delayed Neuronal Death in OGD(Oxygen-Glucose Deprivation) Model (배양 대뇌신경세포의 저당-저산소증 모델에서 우황청심원에 의한 세포사 방지 연구)

  • 원철환;정승현;신길조;문일수;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.125-139
    • /
    • 2002
  • Objectives: The purpose of this investigation is to evaluate the effects of Woohwangcheongsim-won and to study the mechanism for neuronal death protection in OGD (oxygen-glucose deprivation) model with embryonic day 20 (E20) cortical cells of a rat (Sprague Dawley). Methods: E20 cortical cells were dissociated in neurobasal media and grown for 14 days in vitro (DIV). On 14 DIV, Woohwangcheongsim-won was added to the culture media for 72 hrs. On 17 DIV, cells were given an oxygen-glucose deprivation shock (2hrs and 4hrs) and further incubated in normoxia for another three days. On 20 DIV, Woohwangcheongsim-won's effects for neuronal death protection were evaluated by LDH assay and the mechanisms were studied by Bcl-2, Bak, Bax, caspase family. Results & Conclusions: 1. This study indicates that Woohwangcheongsim-won's effects for neuronal death protection in OGD model is confirmed by LDH assay in culture method of embryonic day 20(E20) cortical neuroblasts. 2. Woohwangcheongsim-won's mechanisms for neuronal death protection in OGD model are to restrain inflow of cytochrome c into cellularity caused by Bcl-2 increase (2hrs and 4hrs), to reduce the caspase cascade initiator caspase-8 (4hrs).

  • PDF

Nitric Oxide Production Inhibitory Effect and Antibacterial Activity of the Extract and Fractions from Paeoniae Radix (작약 메탄올 추출물 및 분획물의 Nitric Oxide 생성 억제 효과와 피부질환 원인균에 대한 항균활성)

  • Im, Do-Youn;Lee, Kyoung-In
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.2
    • /
    • pp.173-178
    • /
    • 2012
  • In this study, we investigated antibacterial activity and nitric oxide production inhibitory effect of the methanol extract and its fractions from Paeoniae Radix. In antibacterial activity by the disc diffusion assay against S. aureus, S. epidermidis and P. aeruginosa, the ethyl acetate fraction showed stronger antibacterial activity than other fractions and the extract. Moreover, the ethyl acetate fraction showed strong nitric oxide (NO) production inhibitory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell. However, in NO scavenging ability, the chloroform fraction was higher than the other fractions and the extract. In the lactate dehydrogenase (LDH) assay against RAW 264.7 cell, the extract and fractions were exhibited normal LDH release level as nontoxic result without the ehtyl acetate fraction of 100 ${\mu}g/ml$. As a result, the ethyl acetate fraction and chloroform fraction of the methanol extract from Paeoniae Radix could be applicable to functional materials for antibacterial and anti-inflammatory related fields, respectively.

Effect of Oxidative Stress and Glutamate Receptor Antagonist on Cultured Rat Osteoblast and Osteoclast (백서의 배양 골아세포와 파골세포에 대한 산화적 손상과 Glutamate 수용체 길항제의 영향)

  • Park Seung Taeck;Jeon Seung Ho;Lee Byung Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.996-1001
    • /
    • 2003
  • It is well known that oxidative stress of reactive oxygen species(ROS) may be a causative factor in the pathogenesis of bone disorder. The purpose of this study was to evaluate the cytotoxicity of oxidative stress. Cell viability by MTS assay or INT assay, activity of glutathione peroxidase(GPx), lipid peroxidation(LPO) activity and cell viablity. And also protctive effect of glutamate receptors against ROS-induced osteotoxicity was examined by protein synthesis, alkaline phosphatase (ALP) activity and lactate dehydrogenase (LDH) activity in cultured rat osteoblasts and osteoclasts. XO/HX decreased cell viability and GPx activity, protein synthesis and ALP activity, but increased LPO activity and LDH activity. In the protective effect, N-methyl-D-aspartate (NMDA) receptor antagonists or AMPA/kainate receptor antagonists such as D-2-amino-5-phosphonovaleric acid (APV), 7-chlorokynurenic acid (CKA), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX), NMDA receptor antagonists but AMPA/kainate receptor antagonists showed protective effect on xanthine oxidase (XO) and hypoxanthine (HX) in these cultures by the increse of protein synthesis, ALP activity.

Evaluation of Antioxidant Activity and Cytotoxicity in Mixture Extract of Artemisia asiatica Nakai and Moringa oleifera Lam

  • Lee, Yoon-Ji;Kim, Jang-Oh;Jeon, Chan-Hee;Lee, Ji-Eun;Shin, Ji-Hye;Min, Byung-In
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.296-301
    • /
    • 2020
  • The purpose of this study was performed to evaluate antioxidant activity of the Artemisia asiatica Nakai and Moringa oleifera Lam mixture extract. Mixture extracts were manufactured by concentration and compared with a single extract (only the Artemisia asiatica Nakai mixture and only the Moringa oleifera Lam mixture). The experiments conducted Total polyphenol measurements, Total flavonoid measurements, DPPH radical scavenging activty, ABTS radical scavenging activty and LDH assay. The LDH assay assessment shows that all extracts are cells compared to controls. The toxicity was weak. Finally, The antioxidant capacity was rated higher than mixture extract of a single extract. Also, the optimized mixture was determined AM5 (Artemisia asiatica Nakai mixture: Moringa oleifera Lam mixture = 3:1). For extracts of AM5, Total phenol and flavonoid contents were 271.769±18.087 mg/g and 45.384±5.026 mg/g. and DPPH and ABTS scavenging activity were 70.8±6.496% and 77.1±9.634%. Therefore, it is expected that the value of the extract will increase as it increases its antioxidant activity if it is manufactured according to the appropriate ratio.

Effects of Chilbokyeumgamibang(七福飮加味方) on the Cerebral Cortex Neuron injured by Glucose Oxidase (칠복음가미방(七福飮加味方)이 Glucose Oxidase에 의해 손상(損傷)된 대뇌피질(大腦皮質) 신경세포(神經細胞)에 미치는 영향(影響))

  • Choi Kong-Han;Gang Hyeong-Won;Lyu Yeoung-Su
    • Journal of Oriental Neuropsychiatry
    • /
    • v.10 no.1
    • /
    • pp.53-78
    • /
    • 1999
  • As the average life span have been lengthened and the rate of senile population have been raised, chronic degenerative diseases incident to aging has been increased rapidly and become a social problem. With this social background, recently, the facts that oxygen radicals(OR) have toxic effects on Central Nervous System and Peripheral Nervous System and cause neuropathy such as Parkinson's Disease, Alzheimer Disease have been turned out, and accordingly lots of studies on the mechanism of the toxic effects of OR on nerves, the diseases caused by OR and the approaches to curing the diseases have been made. The purpose of this study is to examine the toxic effects caused by Glucose Oxidase(GO) and the effects of herbal extracts such as Chilbokyeum(CBY), Chilbokyeumga Acori Rhizoma(CAR), Acori Rhizoma(AR) on the treatment of the toxic effects. For this purpose, experiments with the cultured cell from the cerebrums of new born mice were done. The results of these experiments were as follows. 1. GO, a oxygen radical, decreased the survival rate of the cultured cells on NR assay, MTT assay and amount of neurofilaments and increased the amount of total protein, lipid peroxidation and the amount of LDH. 2. CBY have efficacy of increasing the amount of neurofilaments and total protein and decreasing lipid peroxidation and the amount of LDH. 3. CAR have efficacy of increasing the amount of neurofilaments and total protein and decreasing lipid peroxidation and the amount of LDH. 4. AR have efficacy of increasing the amount of neurofilaments and total protein. From the above results, It is concluded that Chilbokyeumgamibang has marked efficacy as a treatment for the damages caused in the GO-mediated oxidative process. And Chilbokyeumgamibang is thought to have certain pharmacological effects on controlling over aging and treating Dementia. Further clinical study of this pharmacological effects of Chilbokyeumgamibang should be complemented.

  • PDF

Protective Effects of Guaruhaebaekbaekju-tang Extract in XO/HX-treated Rat Myocardial Cells (XO/HX에 의하여 손상된 심근세포에 대한 과루해백백주탕 추출물의 방어효과)

  • Park Jun Su;Kwon Kang Beom;Moon Hyoung Chul;Kim In Su;Kang Gil Seong;Kim In Gyu;Kim In Seob;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.486-492
    • /
    • 2003
  • To certify the protective effect of herbal medicine on myocardial damage against oxygen free radical-induced myocardiotoxicity, cytotoxicity was measured using by MTT assay, LDH activity and thiobarbituric acid reactive substances(TBARS) assay in the presence of Guaruhaebaekbaekju-tang(GHBT) extracts or single constituents of this prescription, Myocardial toxicity was evaluated in neonatal rat myocardiocytes in cultures. In the present study, xanthine oxidase/hypoxanthine (XO/HX) resulted in a decrease in cell viability, an increase in LDH activity in culture medium and lipid peroxidation in cultured myocardial cells, In the effect of GHBT extract, it showed the prevention from the XO/HX-induced cardiotoxicity such as the decrease of LDH activity and lipid peroxidation. In the protective effect of Fructus Trichosanthis (FT) and Bulbus Allii Macrostemi (BAM), all the extracts were significantly effective in the protection of XO/HX-induced cardiotoxocity in cultured myocardial cells. From these results, they show that XO/HX is cardiotoxic in cultured myocardial cells derived from neonatal rats, and it suggests that GHBT, FT and BAM extracts are positively effective in the blocking XO/HX-induced cardiotoxicity.

Protective Effects of Gamiheechum-tang(Jiaweixiqian-tang) on Hypertension and Brain Damage (가미치첨탕이 고혈압 및 뇌손상에 미치는 효과)

  • Ryu, Jong-Sam;Kim, Dong-Hee;Park, Jong-O;Namgung, UK;Hong, Seok
    • The Journal of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.72-83
    • /
    • 2003
  • Objective : The goal of the present study was to investigate the protective effect of Gamiheechum-tang (Jiaweixiqian-tang; GHCT) on brain tissue damage from chemical or ischemic insults. Methods : Levels of cultured cortical neuron death caused by toxic chemicals were measured by LDH release assay. Neuroprotective effects of GHCT on brain tissues were examined in vivo by ischemic model of middle cerebral artery (MCA) occlusion. Results : Animal groups treated with GBCT showed significantly decreased hypertension, and reduced levels of aldosterone, dopamine, and epinephrine in the plasma. GHCT treatments ($l0-200\mu\textrm{g}/ml$) significantly decreased cultured cortical neuron death mediated by AMPA, kainate, BSO, or Fe2+ when measured by LDH release assay. Yet, cell death mediated by NMDA was effectively protected by GHCT at the highest concentration examined ($200\mu\textrm{g}/ml$). In the in vivo experiment examining brain damage by MCA occlusion, affected brain areas by ischemic damage and edema were significantly less in animal groups administered with GHCT compared to the non-treated control group. Neurological examinations of forelimbs and hindlimbs showed that GHCT treatment improved animals' recovery from ischemic injury. Moreover, the extent of injury in cortical and hippocampal pyramidal neurons in ischemic rats was much reduced by GHCT, whose morphological features were similarly observed in non-ischemic animals. Conclusion : The present data suggest that GBCT may play an important role in protecting brain tissues from chemical or ischemic injuries.

  • PDF

Antioxidant and Neuronal Cell Protective Effects of Methanol Extract from Schizandra chinensis using an in vitro System (In vitro system에서 오미자 메탄올 추출물의 항산화 및 신경세포 보호효과)

  • Kim, Ji-Hye;Jeong, Chang-Ho;Choi, Gwi-Nam;Kwak, Ji-Hyun;Choi, Sung-Gil;Heo, Ho-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.712-716
    • /
    • 2009
  • In this study, the antioxidant and neuronal cell protective effects of methanol extract from Schizandra chinensis were evaluated. The proximate composition and total phenolics content of the extract were as follows: 64.88% nitrogen free extract, 10.56% crude fiber, 10.22% moisture, 8.33% crude protein, 5.05% ash, 0.96% crude fat, and 83.04 mg/g of total phenolics. In assays the methanol extract of Schizandra chinensis presented ferric reducing/antioxidant power (FRAP) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity in a dose-dependent manner. In a cell viability assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), the methanol extract showed protective effect against $H_2O_2$-induced neurotoxicity, and lactate dehydrogenase (LDH) release into medium was also inhibited by various concentrations of extracts (68-80%). Cell viability after treatment of the methanol extract was higher than that shown for vitamin C ($100\;{\mu}M$) using a neutral red uptake (NRU) assay. Therefore, these data suggest that the methanol extract of Schizandra chinensis may be useful for neurodegenerative diseases including Alzheimer's disease.

Effects of Daejo-whan on the Ischemic Damage of Cerebral Neurons in Culture (대조환이 대뇌신경세포의 허혈성 손상에 미치는 영향)

  • Park Se Hong;Lee Kwang Ro;Bai sun jun;Cheong Sang Su;Kang Sei Young;Lee Sang Kwan;Lee Sung Keun;Yoon Ji won;Sung Kang Keyng
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1500-1508
    • /
    • 2003
  • This study was performed to clarify the neurotoxic mechanism of nerve cells damage by brain ischemia. The cytotoxic effect of ischemia was determined by XTT assay, NR assay, superoxide dismutase(SOD) activity, amount of malondialdehyde(MDA), lactate dehydrogenase(LDH) activity, protein synthesis and tumor necrosis factor(TNF)-α activities after cerebral neurons derived from mouse were exposed to ischemia for 1∼30 minutes. In addition, the protective effect of extract of Daejo-whan(DJW) on ischemia-induced neurotoxicity was examined in these cultures. 1. Ischemia decreased cell number and viability by XTT assay or NR assay when cultured cerebral neurons were exposed to 95% N2/5% CO₂ for 1∼20 minutes in these cultures. 2. Ischemia decreased SOD and protein syntheses, but it increased amount of MDA and, LDH and TNF-α activities in these cultures. 3. In the neuroprotective effect of DJW extracts on cerebral neurons damaged by ischemia, DJW extracts increased SOD activity and protein synthesis. While, it decreased amount of MDA and, LDH and TNF-α activities after cerebral neurons preincubated with herb extracts. It suggests that brain ischemia has neurotoxicity on cultured mouse cerebral neurons, and the herb extract such as DJW was very effective in blocking the neurotoxicity induced by ischemia in cultured mouse cerebral neurons.