• Title/Summary/Keyword: LC-MS

Search Result 1,326, Processing Time 0.031 seconds

Metabolomic Analysis of Ethyl Acetate and Methanol Extracts of Blueberry (Ethyl Acetate와 Methanol을 이용한 블루베리 추출물 대사체 분석)

  • Jo, Young-Hee;Kim, Sugyeong;Kwon, Da-Ae;Lee, Hong Jin;Choi, Hyung-Kyoon;Auh, Joong-Hyuck
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.419-424
    • /
    • 2014
  • Metabolite profiling of blueberry (cultivar "Spartan") was performed by extraction using different solvents, methanol and ethyl acetate, through metabolomic analysis using LC-MS/MS. Unsupervised classification method (PCA) and supervised prediction model (OPLS-DA) provided good categorization of metabolites according to the extraction solvents. Metabolites of the anthocyanin family, including delphinidin hexoside, delphinidin, 5-O-feruloylquinic acid, malvidin hexoside, malvidin-3-arabinoside, petunidin-3-arabinoside, and petunidin hexoside, were mainly detected in methanol fractions, whereas those of the flavonoid family, including chlorogenic acid, chlorogenic acid dimer, 6,8-di-C-arabinopyranosyl-luteolin, and luteolin were successfully prepared in the ethyl acetate fraction. Thus, metabolomic analysis of blueberry extracts allows for the simple profiling of whole and distinctive metabolites for future applications.

Plasma Phosphoproteome and Differential Plasma Phosphoproteins with Opisthorchis Viverrini-Related Cholangiocarcinoma

  • Kotawong, Kanawut;Thitapakorn, Veerachai;Roytrakul, Sittiruk;Phaonakrop, Narumon;Viyanant, Vithoon;Na-Bangchang, Kesara
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1011-1018
    • /
    • 2015
  • This study was conducted to investigate the plasma phosphoproteome and differential plasma phosphoproteins in cases of of Opisthorchis viverrini (OV)-related cholangiocarcinoma (CCA). Plasma phosphoproteomes from CCA patients (10) and non-CCA subjects (5 each for healthy subjects and OV infection) were investigated using gel-based and solution-based LC-MS/MS. Phosphoproteins in plasma samples were enriched and analyzed by LC-MS/MS. STRAP, PANTHER, iPath, and MeV programs were applied for the identification of their functions, signaling and metabolic pathways; and for the discrimination of potential biomarkers in CCA patients and non-CCA subjects, respectively. A total of 90 and 60 plasma phosphoproteins were identified by gel-based and solution-based LC-MS/MS, respectively. Most of the phosphoproteins were cytosol proteins which play roles in several cellular processes, signaling pathways, and metabolic pathways (STRAP, PANTHER, and iPath analysis). The absence of serine/arginine repetitive matrix protein 3 (A6NNA2), tubulin tyrosine ligase-like family, member 6, and biorientation of chromosomes in cell division protein 1-like (Q8NFC6) in plasma phosphoprotein were identified as potential biomarkers for the differentiation of healthy subjects from patients with CCA and OV infection. To differentiate CCA from OV infection, the absence of both serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit beta isoform and coiled-coil domain-containing protein 126 precursor (Q96EE4) were then applied. A combination of 5 phosphoproteins may new alternative choices for CCA diagnosis.

Tetramine Analysis using Liquid Chromatography-Tandem Mass Spectrometry and Ion Chromatography (LC-MS/MS와 Ion Chromatography를 이용한 테트라민 분석)

  • Song, Ki-Cheol;Lee, Ka-Jeong;Kim, Ji-Hoe;Yoon, Ho-Dong;Yu, Hong-Sik;Mok, Jong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.1
    • /
    • pp.45-49
    • /
    • 2011
  • As a first step toward identifying a new method for testing sea snail tissue for toxins, and thus prevent food poisoning due to the ingestion of contaminated snails, we measured the tetramine [$(CH_3)_4N^+$] contents of sea snails from the Korean coast using both liquid chromatography-tandem mass spectrometry (LC-MS/MS) and ion chromatography. For tetramine tested, good linearity ($r^2$ = 0.9996) was observed between the amounts in the injected samples and the peak areas of standard toxins, which ranged from 0.1 to 100 ng. The recovery (%) of tetramine from spiked tissue and mid-gut gland samples ranged from 84.0 to 95.3%. The quantitative results for tetramine using this method were in good agreement with the theoretical values. LC-MS/MS has both high sensitivity and selectivity, which makes it possible to measure trace quantities of tetramine in samples.

Analysis of Estrogen in Pomegranate Extract by Solid Phase Extraction and Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS를 이용한 석류추출물 중의 에스트로겐 분석)

  • Kum, Eun-Joo;Kwon, Do-Hyeong;Shin, Hye-Seoung
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.1
    • /
    • pp.79-82
    • /
    • 2010
  • The pomegranate (Punica granatum), especially its fruit, possesses a vast ethnomedical history and represents a phytochemical reservoir of heuristic medical value. The tree and fruit can be divided into several anatomical compartments, and the fruit juice, peel and oil are known to be weakly estrogenic and heuristically of interest for treatment of menopausal symptoms and sequellae. In this study, analysis of estrogen in pomegranate extract was carried out with LC/MS/MS. Three batches of pomegranate extract samples were used to analysis the target compounds (estrogen). The contents of estrogen derivatives in the samples were 38.6 ppb of estriol, 83.5 ppb of estrone, and 10.9 ppb of estradiol. This result suggests that the pomegranate extract can used for treatment of menopause symptoms in the woman.

Rapid Determination of Caffeine in Forensic Aqueous Sample by Dilute and Shoot LC-MS/MS (시료 희석 직접 주입 LC-MS/MS를 이용한 법화학 수용액 시료 중 카페인 신속 분석)

  • Choi, Yun Jeong;Kim, Hee Seung;In, Moon Kyo;Kim, Jin Young
    • YAKHAK HOEJI
    • /
    • v.60 no.3
    • /
    • pp.112-117
    • /
    • 2016
  • A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the determination of caffeine in forensic aqueous sample. The centrifuged sample ($100{\mu}l$) was diluted 50-fold with distilled water. The diluted sample ($400{\mu}l$) was then diluted further with $200{\mu}l$ of 0.1% formic acid solution and $400{\mu}l$ of acetonitrile containing 500 ng of caffeine-(3-methyl-$^{13}C_3$) prior to LC-MS/MS analysis. The mobile phase was composed of 0.1% formic acid in distilled water (A) and acetonitrile (B). Chromatographic separation was performed by using a Zorbax SB-C18 ($100mm{\times}2.1mm$ i.d., $3.5{\mu}m$) column and caffeine was eluted within 1.1 min. Linear least-squares regression with a 1/x weighting factor was used to generate a calibration curve with the coefficients of determination ($r^2=0.9983$). The lower limit of quantification was $25ng/ml$ for the analyte. The process efficiency was 98.6~100.1%. Intra- and inter-day precisions were not more than 2.1% and 1.7%, while intra- and inter-day accuracies were ranged from -6.8 to 4.5%, respectively. The suitability of the method was examined by analyzing unknown forensic aqueous samples.

Simultaneous Determination of Doxifluridine and 5-FU in Liver and Intestine Tissue Using LC/MS/MS (LC/MS/MS를 이용한 원숭이 및 비글견의 간 및 장관 조직에서의 Doxifluridine과 대사체 5-FU 동시분석법 개발)

  • Woo, Young-Ah;Kim, Ghee-Hwan;Jeong, Eun-Ju;Kim, Choong-Yong
    • YAKHAK HOEJI
    • /
    • v.52 no.2
    • /
    • pp.93-100
    • /
    • 2008
  • A liquid chromatographic method with tandom spectrometric detection (LC/MS/MS) for the simultaneous determination of doxifluridine and its active metabolite, 5-fluorouracil (5-FU) was developed over the concentration range of $5{\sim}2000$ ng/ml, respectively. Doxifluridine, 5-FU and internal standard, 5-chlorouracil (5-CU), were extracted from liver and intestine tissue via protein precipitation. Acetonitrile was used as the extraction solvent and the supernatant was evaporated and reconstructed in mobile phase. Optimum chromatographic separation was achieved on a Agilent Zorbax $C_{18}$ ($100\;mm{\times}2.1\;mm$, $3.5\;{\mu}m$) column with mobile phase run in isocratic with methanol : water (20 : 80, v/v). The flow rate was 0.2 ml/min with total cycle time of 5 min. The lower limit of quantification was validated at 5.0 ng/ml of liver and intestine tissue, for both doxifluridine and 5-FU, respectively. The intra-day and inter-day precision and accuracy of quality control (QC) samples were <11% coefficient of variation and <7% relative error from theoretical concentration for both analytes. In addition, the special designed stability study was performed, because the metabolism of doxifluridine occurs spontaneously even in ice bath for monkey liver. The stability of doxifluridine in liver and intestine of monkey and beagle dog was compared. It was found that bioanalytical validation could not be performed for the monkey liver; however, beagle dog's liver has relatively low speed of metabolism compared to monkey liver and instead of monkey liver, beagle dog's liver could be used for the validation. Bioanalytical validation could be performed in monkey intestine. Eventually, this developed method for liver and intestine will be useful in support of the toxicokinetic and pharmacokinetic studies of doxifluridine and 5-FU.

LC-PDA/MS/MS Analysis of Glucosinolates in Dolsan Leaf Mustard Kimchi and Dolsan Leaf Mustard Pickles (돌산갓 김치와 돌산갓 피클의 Glucosinolates의 LC-PDA/MS/MS분석)

  • Oh, Sun Kyung;Tsukamoto, Chigen;Kim, Ki Woong;Choi, Myeong Rak
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Changes in the concentrations of glucosinolates and related compounds in different extracts of Dolsan leaf mustard kimchi (DLMK) and Dolsan leaf mustard pickles (DLMP) were during storage investigated. Samples were kept at 0oC for 35 days and collected at 7 day intervals. The leaves and stems of DLMK and DLMP were refluxed for 24 h with 50% acetonitrile, and the extracts were analyzed by LC-PDA/MS/MS. The main glucosinolates detected in DLMK were sinigrin, gluconapoleiferin, glucobrassicanapin, and gluconapin, whereas those in DLMP were sinigrin, gluconapoleiferin, glucobrassicanapin, glucobrassicin, and glucoerucin. Sinigrin concentrations were quantified by UV absorption at 228 nm. Sinigrin concentrations in the leaves and stems of DLMK on the day of preparation were 2.14 mg/g and 2.25 mg/g, respectively, and those on day 35 after preparation were 1.25 mg/g and 1.00 mg/g, respectively. DLMP showed a similar trend: the concentrations in the leaves and stems on the day of preparation were 2.04 mg/g and 0.29 mg/g, respectively, whereas those on day 35 after preparation were 0.59 mg/g and 0.41 mg/g, respectively. Thus, sinigrin concentrations decreased during storage.

Analysis and Exposure Assessment of Perchlorate in Korean Dairy Products with LC-MS/MS

  • Oh, Sung-Hee;Lee, Ji-Woo;Mandy, Pawlas;Oh, Jeong-Eun
    • Environmental Analysis Health and Toxicology
    • /
    • v.26
    • /
    • pp.12.1-12.7
    • /
    • 2011
  • Objectives: Perchlorate is an emerging contaminant that is found everywhere, including various foods. Perchlorate is known to disturb the production of thyroid hormones and leads to mental disorders in fetuses and infants, as well as metabolic problems in adults. In this study, we attempted to establish an LC-MS/MS method for measuring perchlorate in dairy products and used this developed method to investigate perchlorate levels in Korean milk and yogurt samples. Methods: The developed method of perchlorate analysis requires a shaker and 1% acetic acid/acetonitrile as the extracting solvent. Briefly, the samples were extracted and then centrifuged (4000 rpm, 1hour), and the supernatant was then passed through a $Envi^{TM}$ Carb SPE cartridge that had been prewashed sequentially with 6 mL of acetonitrile and 6 mL of 1% acetic acid in water. The final volume of the sample extract was adjusted to 40 mL with reagent water and the final sample was filtered through a 0.20-${\mu}m$ pore size PTFE (Polytetrafluoroethylene) syringe filter prior to LC-MS/MS. Results: The average levels of perchlorate in milk and yogurt samples were $5.63{\pm}3.49\;{\mu}g/L$ and $3.65{\pm}2.42\;{\mu}g/L$, respectively. The perchlorate levels observed in milk samples in this study were similar to those reported from China, Japan, and the United States. Conclusions: The exposure of Koreans to perchlorate through the consumption of dairy products was calculated based on the results of this study. For all age groups, the calculated exposure to perchlorate was below the reference of dose (0.7 ${\mu}g/kg$-day) proposed by the National Academy of Science, USA, but the perchlorate exposure of children was higher than that of adults. Therefore, further investigation of perchlorate in other food samples is needed to enable a more exact assessment of exposure of children to perchlorate.

Development of a Sensitive Analytical Method of Polynemoraline C Using LC-MS/MS and Its Application to a Pharmacokinetic Study in Mice

  • Pang, Minyeong;Lee, Jaehyeok;Jeon, Ji-Hyeon;Song, Im-Sook;Han, Young Taek;Choi, Min-Koo
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.200-205
    • /
    • 2021
  • Polynemoraline C, a pyridocoumarin alkaloid, exhibits anticholinergic, anti-inflammatory, antitumor, and antimicrobial activities. A sensitive analytical method of polynemoraline C in mouse plasma was developed and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Polynemoraline C and 13C-caffeine (internal standard) in mouse plasma were extracted using a liquid-liquid extraction method coupled with ethyl acetate. This extraction method resulted in high and reproducible extraction recovery in the range of 73.49%-77.31% with no interfering peaks around the peak retention time of polynemoraline C and 13C-caffeine. The standard calibration curves for polynemoraline C were linear over the range of 0.5-200 ng/mL with r2 > 0.985. The accuracy, precision, and the stability of the data were within acceptable limits on the FDA guideline. After intravenous and oral administration of polynemoraline C at doses of 5 and 30 mg/kg, respectively, the present method was successfully applied to the pharmacokinetic study of polynemoraline C. Polynemoraline C in mouse plasma showed a multi-exponential elimination pattern with a high volume of distribution values. This compound's absolute oral bioavailability was found to be 17.0%. Polynemoraline C's newly developed LC-MS/MS method can be used for further studies on the efficacy, toxicity, and biopharmaceutics of polynemoraline C, as well as its pharmacokinetic studies.

Simultaneous Analysis of Mycotoxins and Risk Assessment in Seeds using LC-MS/MS (LC-MS/MS를 이용한 종자류 생약의 곰팡이독소 동시분석 및 위해도 평가)

  • Choi, Eun Jung;Park, Young Ae;Choi, Su Jeong;Jung, Sam Ju;Park, Youn Sun;Hwang, In Sook;Yu, In Sil;Shin, Gi Young
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.270-277
    • /
    • 2020
  • This study analyzed mycotoxins, aflatoxin B1, B2, G1, G2, fumonisin B1, B2, ochratoxin A and zearalenone, using LC-MS/MS and conducted risk assessment on 54 samples of seeds distributed in SeoulYangnyeongsi and the management status of extramural herbal dispensary facility. The matched calibration showed a good linearity as observed in 6 concentration levels(r2>0.999) as a result of method validation applied with Arecae semen. Limits of detection(LOD) and quantification(LOQ) were in the range of 0.02-0.11 ㎍/kg and 0.08-0.34 ㎍/kg, respectively. Recoveries also estimated, ranging from 65.1-99.7% with relative standard deviation(RSD) 0.5-6.3%. As a result of the method on 54 samples, mycotoxins were detected in 16 samples. Among them, two Thujae semen showed a degree of concentration that exceeded the aflatoxin specification. In the risk assessment, the human exposure safety standard values were calculated as ADI(Acceptable Daily Intake) for aflatoxin B1, fumonisin and zearalenone. Ochratoxin A was calculated as PTWI(Provisional Tolerable Weekly Intake). The MOE(Margine of Exposure) of aflatoxin B1 was in the range of 40.36-3536.88. And no items exceeded 100% in %TDI(Tolerable Daily Intake) and %TWI(Tolerable Weekly Intake) of fumonisin, zearalenone and ochratoxin A.