• Title/Summary/Keyword: LC-MALDI

Search Result 28, Processing Time 0.027 seconds

Analysis of Entamoeba histolytica Membrane via LC-MALDI-TOF/TOF

  • Ujang, Jorim Anak;Noordin, Rahmah;Othman, Nurulhasanah
    • Mass Spectrometry Letters
    • /
    • v.10 no.3
    • /
    • pp.84-87
    • /
    • 2019
  • Liquid chromatography mass spectrometry is widely employed in proteomics studies. One of such instruments is the Liquid Chromatography (LC)-Matrix-assisted laser desorption ionisation (MALDI)-Time of flight (TOF) or LC-MALDI-TOF/TOF. In this study, this instrument was used to identify the membrane proteins of a protozoan parasite namely Entamoeba histolytica. It causes amoebiasis in human. The E. histolytica trophozoites were cultured prior to the membrane protein extraction using the conventional method, $ProteoPrep^{(R)}$ and $ProteoExtract^{(R)}$ kits. Then, the membrane protein extracts were trypticdigested and analysed by LC-MALDI-TOF/TOF. Approximately, 194 proteins were identified and 27.8% (54) were predicted as membrane proteins having 1 to 15 transmembrane regions and signal peptides by combining all three extraction methods. Also, this study has discovered 3 unique proteins as compared to our previous study which merit further investigation.

Do-It-Yourself (DIY) manufacture of a Nano-LC MALDI spotter robot using 3D printing technology

  • Lee, Jae-ung;Oh, Han Bin
    • Analytical Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.167-173
    • /
    • 2017
  • In the era of the forth Industrial Revolution, open source code and open source hardware have gained much attention. In particular, 3D printing technology is expanding into the realms of classical science, technology and our daily lives. Relatedly, in the present study, we demonstrate the manufacture of a nano-LC MALDI spotter robot using 3D printing technology. The parts of the spotter robot were either made using a 3D printer or purchased as 3D printer parts from the 3D printer online market, so that anyone can make the robot without a deep knowledge of engineering or electronics, i.e., DIY (do-it-yourself) product. In the nano-LC MALDI spotter, the nano-LC eluent and MALDI matrix were mixed in a T-union and discharged from the capillary outlet. The eluent and matrix mixture could be spotted onto the movable MALDI plate. The MALDI plate was designed to translate in a two-dimensional space (xy plane), which was enabled by the movements of two stepper motors. In the paper, all computer-aided design (CAD) files for the parts and operation software are provided to help the reader manufacture their own spotter robot.

Identification of Protein Markers Specific for Papillary Renal Cell Carcinoma Using Imaging Mass Spectrometry

  • Na, Chan Hyun;Hong, Ji Hye;Kim, Wan Sup;Shanta, Selina Rahman;Bang, Joo Yong;Park, Dongmin;Kim, Hark Kyun;Kim, Kwang Pyo
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.624-629
    • /
    • 2015
  • Since the emergence of proteomics methods, many proteins specific for renal cell carcinoma (RCC) have been identified. Despite their usefulness for the specific diagnosis of RCC, such proteins do not provide spatial information on the diseased tissue. Therefore, the identification of cancer-specific proteins that include information on their specific location is needed. Recently, matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) based imaging mass spectrometry (IMS) has emerged as a new tool for the analysis of spatial distribution as well as identification of either proteins or small molecules in tissues. In this report, surgical tissue sections of papillary RCC were analyzed using MALDI-IMS. Statistical analysis revealed several discriminative cancer-specific m/z-species between normal and diseased tissues. Among these m/z-species, two particular proteins, S100A11 and ferritin light chain, which are specific for papillary RCC cancer regions, were successfully identified using LC-MS/MS following protein extraction from independent RCC samples. The expressions of S100A11 and ferritin light chain were further validated by immunohistochemistry of human tissues and tissue microarrays (TMAs) of RCC. In conclusion, MALDI-IMS followed by LC-MS/MS analysis in human tissue identified that S100A11 and ferritin light chain are differentially expressed proteins in papillary RCC cancer regions.

Recent Advances in MALDI-MS Based Quantitative Targeted Glycan Analysis (MALDI-MS 기반 당단백질 당쇄의 정량분석 기술 개발 연구 동향)

  • Kim, Kyoung-Jin;Kim, Yoon-Woo;Hwang, Cheol-Hwan;Park, Han-Kyu;Jeong, Jae Hyun;Kim, Yun-Gon
    • KSBB Journal
    • /
    • v.30 no.5
    • /
    • pp.230-238
    • /
    • 2015
  • Abnormal glycosylation can significantly affect the intrinsic functions (i.e., stability and solubility) of proteins and the extrinsic protein interactions with other biomolecules. For example, recombinant glycoprotein therapeutics needs proper glycosylation for optimal drug efficacy. Therefore, there has been a strong demand for rapid, sensitive and high-through-put glycomics tools for real-time monitoring and fast validation of the biotherapeutics glycosylation. Although liquid chromatography tandem mass spectrometry (LC-MS/MS) is one of the most powerful tools for the characterization of glycan structures, it is generally time consuming and requires highly skilled personnel to collect the data and analyze the results. Recently, as an alternative method, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS), which is a fast, robust and easy-to-use instrumentation, has been used for quantitative glycomics with various chemical derivatization techniques. In this review, we highlight the recent advances in MALDI-MS based quantitative glycan analysis according to the chemical derivatization strategies. Moreover, we address the application of MALDI-MS for high-throughput glycan analysis in many fields of clinical and biochemical engineering.

A Proteome Reference Map for Porcine Plasma Proteins

  • Jeong, Jin Young;Nam, Jin Sun;Park, Mi Rim;Kim, Jang Mi;Jeong, Hak Jae;Kim, Kyung Woon;Lee, Hyun-Jeong
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.255-261
    • /
    • 2013
  • To profile the proteome in porcine plasma, blood samples were collected from adult male barrows and those plasma were retrieved. For the depletion or pre-fractionation of high-abundance proteins, plasma samples were treated with commercial kits. Then, protein profiling was initiated using one and two-dimensional electrophoresis. Proteins were spotted and then identified by MALDI-TOF-TOF and LC-MS-MS. In the results, more than forty six proteins were identified and the reference map was constructed. The pre-treatment for the removal of high-abundance proteins caused the changes in 2-DE images and some of the proteins were newly uncovered after the most of high abundant proteins were removed. However, it is expected for further steps necessary to identify more low-abundance proteins that may contain potential bio-markers.

Comparative Proteomic Analyses of the Yeast Saccharomyces cerevisiae KNU5377 Strain Against Menadione-Induced Oxidative Stress

  • Kim, Il-Sup;Yun, Hae-Sun;Jin, In-Gnyol
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.207-217
    • /
    • 2007
  • The Saccharomyces0 cerevisiae KNU5377 strain, which was isolated from spoilage in nature, has the ability to convert biomass to alcohol at high temperatures and it can resist against various stresses [18, 19]. In order to understand the defense mechanisms of the KNU5377 strain under menadione (MD) as oxidative stress, we used several techniques for study: peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) followed by two-dimensional (2D) gel electrophoresis, liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), and surface-enhanced laser desorption ionization-time of flight (SELDI-TOF) technology. Among the 35 proteins identified by MALDI-TOF MS, 19 proteins including Sod1p, Sod2p, Tsa1p, and Ahp1p were induced under stress condition, while 16 proteins were augmented under normal condition. In particular, five proteins, Sod1p, Sod2p, Ahp1p, Rib3p, Yaf9p, and Mnt1p, were induced in only stressed cells. By LC-ESI-MS/MS analysis, 37 proteins were identified in normal cells and 49 proteins were confirmed in the stressed cells. Among the identified proteins, 32 proteins were found in both cells. Five proteins including Yel047cp and Met6p were only upregulated in the normal cells, whereas 17 proteins including Abp1P and Sam1p were elevated in the stressed cells. It was interesting that highly hypothetical proteins such as Ynl281wp, Ygr279cp, Ypl273wp, Ykl133cp, and Ykr074wp were only expressed in the stressed cells. SELDI-TOF analysis using the SAX2 and WCX2 chips showed that highly multiple-specific protein patterns were reproducibly detected in ranges from 2.9 to 27.0 kDa both under normal and stress conditions. Therefore, induction of antioxidant proteins, hypothetical proteins, and low molecular weight proteins were revealed by different proteomic techniques. These results suggest that comparative analyses using proteomics might contribute to elucidate the defense mechanisms of KNU5377 under MD stress.

Comparative Proteome Analysis of Celastrol-Treated Helicobacter pylori

  • Kim, Sa-Hyun
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.395-401
    • /
    • 2017
  • Various preclinical and clinical trials have been conducted the efficacy of celastrol. In data presented in the current manuscript is the first trial to inhibit Helicobacter pylori with celastrol. In this study, the quantitative change of various H. pylori proteins including CagA and VacA by the anti-bacterial effect of celastrol was determined. The anti-H. pylori effects of celastrol was investigated by performing 2-dimensional electrophoresis and additional supporting experiments. After 2-dimensional electrophoresis analysis, spot intensities were analyzed and then each spot was identified using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) or peptide sequencing using Finnigan LCQ ion trap mass spectrometer (LC-MS/MS). The results show that celastrol has multiple effects on protein expression in H. pylori.

Bacterial Identification and Detection of Equol in Korean Soybean Paste (한국 된장에서 Equol의 검출 및 미생물 동정)

  • Woo, Seung-Gyun;Lee, So-Yeon;Choi, Go-Woon;Hong, You-Jin;Lee, So-Min;Park, Kang Gyun;Eom, Yong-Bin
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.286-291
    • /
    • 2015
  • Equol has beneficial effects on human health. Fermented soy products contain equol, and many microbes participate in the equol production process. This study investigated fermented Korean soybean paste, doenjang. Thirty seven doenjang samples collected from different manufacturers were examined. Equol was detected in 3 samples (D2, D13, and D19) at the maximum content of 507 ng/100 g by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifteen microbial species were isolated and identified by 16S rRNA gene sequence analysis and by matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Bacillus spp, Paenibacillus spp, Tetragenococcus spp, Stapylococcus spp, and Clostridium species were the predominant bacteria in equol containing doenjang samples.

A Sensitive Method for Identification of N-Glycosylation Sites and the Structures of N-Glycans Using Nano-LC-MS/MS (나노 액체크로마토그래피-텐덤 질량분석기를 이용하여 N-당질화 위치 및 N-당사슬 구조 규명을 위한 방법)

  • Cho, Young-Eun;Kim, Sook-Kyung;Baek, Moon-Chang
    • YAKHAK HOEJI
    • /
    • v.57 no.4
    • /
    • pp.250-257
    • /
    • 2013
  • Biosimilars are important drugs in medicine and contain many glycosylated proteins. Thorough analysis of the glycosylated protein is a prerequisite for evaluation of biosimilar glycan drugs. A method to assess the diversity of N-glycosylation sites and N-glycans from biosimilar glycan drugs has been developed using two separate methods, LC-MS/MS and MALDI-TOF MS, respectively. Development of sensitive, accurate, and efficient methods for evaluation of glycoproteins is still needed. In this study, analysis of both N-glycosylation sites and N-glycans of glycoprotein was performed using the same LC-MS/MS with two different nano-LC columns, nano-C18 and nano-porous graphitized carbon (nano-PGC) columns. N-glycosylated proteins, including RNAse B (one N-glycosylation site), Fetuin (three sites), and ${\alpha}$-1 acid glycoprotein (four sites), were used, and small amounts of each protein were used for identification of N-glycosylation sites. In addition, high mannose N-glycans (one type of typical glycan structure), Mannose 5 and 9, eluted from RNAse B, were successfully identified using nano-PGC-LC MS/MS analysis, and the abundance of each glycan from the glycoprotein was calculated. This study demonstrated an accurate and efficient method for determination of N-glycosylation sites and N-glycans of glycoproteins based on high sensitive LC-MS/MS using two different nano-columns; this method could be applied for evaluation of the quality of various biosimilar drugs containing N-glycosylation groups.