Browse > Article

Comparative Proteomic Analyses of the Yeast Saccharomyces cerevisiae KNU5377 Strain Against Menadione-Induced Oxidative Stress  

Kim, Il-Sup (epartment of Microbiology, Kyungpook National University)
Yun, Hae-Sun (Division of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institute of Health)
Jin, In-Gnyol (Department of Microbiology, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.2, 2007 , pp. 207-217 More about this Journal
Abstract
The Saccharomyces0 cerevisiae KNU5377 strain, which was isolated from spoilage in nature, has the ability to convert biomass to alcohol at high temperatures and it can resist against various stresses [18, 19]. In order to understand the defense mechanisms of the KNU5377 strain under menadione (MD) as oxidative stress, we used several techniques for study: peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) followed by two-dimensional (2D) gel electrophoresis, liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), and surface-enhanced laser desorption ionization-time of flight (SELDI-TOF) technology. Among the 35 proteins identified by MALDI-TOF MS, 19 proteins including Sod1p, Sod2p, Tsa1p, and Ahp1p were induced under stress condition, while 16 proteins were augmented under normal condition. In particular, five proteins, Sod1p, Sod2p, Ahp1p, Rib3p, Yaf9p, and Mnt1p, were induced in only stressed cells. By LC-ESI-MS/MS analysis, 37 proteins were identified in normal cells and 49 proteins were confirmed in the stressed cells. Among the identified proteins, 32 proteins were found in both cells. Five proteins including Yel047cp and Met6p were only upregulated in the normal cells, whereas 17 proteins including Abp1P and Sam1p were elevated in the stressed cells. It was interesting that highly hypothetical proteins such as Ynl281wp, Ygr279cp, Ypl273wp, Ykl133cp, and Ykr074wp were only expressed in the stressed cells. SELDI-TOF analysis using the SAX2 and WCX2 chips showed that highly multiple-specific protein patterns were reproducibly detected in ranges from 2.9 to 27.0 kDa both under normal and stress conditions. Therefore, induction of antioxidant proteins, hypothetical proteins, and low molecular weight proteins were revealed by different proteomic techniques. These results suggest that comparative analyses using proteomics might contribute to elucidate the defense mechanisms of KNU5377 under MD stress.
Keywords
Proteomic analysis; Saccharomyces cerevisiae KNU5377; SELDI-TOF; LC-ESI-MS/MS;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 11  (Related Records In Web of Science)
연도 인용수 순위
1 Keightley, J. A., L. Shang, and M. Kinter. 2004. Proteomic analysis of oxidative stress-resistant cells: A specific role for aldolase reductase overexpression in cytoprotection. Mol. Cell. Proteomics 3: 167-175   DOI
2 Kim, I. S., H. S. Yun, H. Iwahashi, and I. N. Jin. 2006. Genome-wide expression analyses of adaptive response against MD-induced oxidative stress in Saccharomyces cerevisiae KNU5377. Process Biochem. 41: 2305-2313   DOI   ScienceOn
3 Kim, J. W., I. N. Jin, and J. H. Seu. 1995. Isolation of Saccharomyces cerevisiae F38-1, a thermotolerant for fuel alcohol production at higher temperature. Kor. J. Appl. Microbiol. Biotechnol. 23: 617-623
4 Kolkman, A., M. Slijper, and A. Heck. 2005. Development and application of proteomics technologies in Saccharomyces cerevisiae. Trends Biotechnol. 23: 598-604   DOI   ScienceOn
5 Paik, S. K., H. S. Yun, H. S. Sohn, and I. N. Jin. 2003. Effect of trehalose accumulation on the intrinsic and acquired thermotolerance in a natural isolate, Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 13: 85-89
6 Park, S. G., M. K. Cha, W. Jeong, and I. H. Kim. 2000. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275: 5723- 5732   DOI   ScienceOn
7 Patterson, S. D. and R. H. Aebersold. 2003. Proteomics: The first decade and beyond. Nat. Genet. 33: 311-323   DOI   ScienceOn
8 Wenzel, T. J., A. Teunissen, and H. Steensma. 1995. PDA1 mRNA: A standard for quantitation of mRNA in Saccharomyces cerevisiae superior to ACT1 mRNA. Nucleic Acids Res. 23: 883-884   DOI   ScienceOn
9 Kim, J. W., S. H. Kim, and I. N. Jin. 1995. The fermentation characteristics of Saccharomyces cerevisiae F38-1, a thermotolerant yeast isolated for fuel alcohol production at elevated temperature. Kor. J. Appl. Microbiol. Biotechnol. 23: 624-631
10 Paik, S. K., H. S. Yun, H. Iwahashi, K. Obuchi and I. N. Jin. 2003. Effect of trehalose on stabilization of cellular components and critical target against heat shock in Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 15: 965- 970
11 Chae, H., I. H. Kim, K. Kim, and S. Rhee. 1993. Cloning, sequencing and mutation of thiol specific antioxidant gene of Saccharomyces cerevisiae. J. Biol. Chem. 268: 16815- 16821
12 Weinberger, S. R., E. Boschetti, P. Santambien, and V. Brenac. 2002. Surface-enhanced laser desorption-ionization retentate chromatographyTM mass spectrometry (SELDI-RCMS): A new method for rapid development of process chromatography conditions. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 782: 307-316   DOI
13 Yin, Z., D. Stead, L. Selway, J. Walker, I. Riba-Garcia, T. Mclnerney, S. Gaskell, S. G. Oliver, P. Cash, and A. J. Brown. 2004. Proteomic response to amino acid starvation in Candida albicans and Saccharomyces cerevisiae. Proteomics 4: 2425-2436   DOI   ScienceOn
14 Bro, C., B. Regenberg, G. Lagniel, J. Labarre, M. Montero- Lomelí, and J. Nielsen. 2003. Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells. J. Biol. Chem. 278: 32141-32149   DOI   ScienceOn
15 Cabiscol, E., E. Piulats, P. Echave, E. Herrero, and J. Ros. 2000. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275: 27393- 27398
16 de Nobel, H., L. Lawrie, S. Brul, F. Klis, M. Davis, H. Alloush, and P. Coote. 2001. Parallel and comparative analysis of the proteome and transcriptome of sorbic acidstressed Saccharomyces cerevisiae. Yeast 18: 1413-1428   DOI   ScienceOn
17 Vido, K., D. Spector, G. Lagniel, S. Lopez, M. B. Toledano, and J. Labarre. 2001. A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J. Biol. Chem. 276: 8469-8474   DOI   ScienceOn
18 Wilson, M. A., C. V. St. Amour, J. L. Collins, D. Ringe, and G. A. Petsko. 2004. The 1.8-A resolution crystal structure of YDR533Cp from Saccharomyces cerevisiae: A member of the DJ-1/ThiJ/PfpI superfamily. Proc. Natl. Acad. Sci. USA 101: 1531-1536
19 Walker, G. M. and P. V. Dijck. 2006. Physiological and molecular responses of yeasts to the environment, pp. 111- 152. In A. Querol and G. Fleet (eds.), Yeasts in Food and Beverages. Springer-Verlag, Berlin
20 Wei, J., J. Sun, W. Yu, A. Jones, P. Oeller, M. Keller, G. Woodnutt, and J. M. Short. 2005. Global proteome discovery using an online three-dimensional LC-MS/MS. J. Proteome Res. 4: 801-808   DOI   ScienceOn
21 Graeme, M. W. 1998. Yeast growth, pp. 167-169. In M. W. Graeme (ed.), Yeast Physiology and Biotechnology. John Wiley & Sons Ltd, Chichester
22 Hamdan, M. and P. G. Righetti. 2005. Proteomics Today: Protein Assessment and Biomarkers Using Mass Spectrometry, 2D Electrophoresis, and Microarray Technology, pp. 69- 126. John Wiley & Sons, Inc., Hoboken, New Jersey, U.S.A
23 Bassett, D. E. Jr., M. S. Boguski, and P. Hieter. 1996. Yeast genes and human disease. Nature 379: 589-590   DOI   ScienceOn
24 Kim, I. S., H. S. Yun, H. Shimisu, E. Kitakawa, H. Iwahashi, and I. N. Jin. 2005. Elucidation of copper and asparagine transport systems in Saccharomyces cerevisiae KNU5377 through genome-wide transcriptional analysis. J. Microbiol. Biotechnol. 15: 1240-1249   과학기술학회마을
25 Costa, V. and P. Moradas-Ferreira. 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: Insights into ageing, apoptosis and diseases. Mol. Aspects Med. 22: 217-246   DOI   ScienceOn
26 Yun, H. S., S. K. Paik, I. S. Kim, I. N. Jin, and H. Y. Sohn. 2004. Direct evidence of intracellular alkalization in Saccharomyces cerevisiae KNU5377 exposed to inorganic sulfuric acid. J. Microbiol. Biotechnol. 14: 243-249
27 Derek, J. J. 1998. Oxidative stress responses of the Saccharomyces cerevisiae. Yeast 14: 1511-1527   DOI   ScienceOn
28 Godon, C., G. Lagniel, J. W. Lee, J. M. Buhler, S. Kieffer, M. Perrot, H. Boucherie, M. B. Toledano, and J. Labarre. 1998. The $H_{2}O_{2}$ stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273: 22480-22489   DOI   ScienceOn
29 Jamnik, P. and P. Raspor. 2005. Methods for monitoring oxidative stress response in yeasts. J. Biochem. Mol. Toxicol. 19: 195-203   DOI   ScienceOn
30 Lee, J., D. Spector, C. Godon, J. Labarre, and M. B. Tolendano. 1996. A new antioxidant with alkyl hydroperoxide defense properties in yeast. J. Biol. Chem. 274: 4537-4544   DOI   ScienceOn
31 Rehman, I., A. Azzouzi, J. Catto, and F. Hamdy. 2005. The use of proteomics in urological research. EAU Update Series 3: 171-179   DOI   ScienceOn
32 Gralla, E. B. and J. S. Valentine. 1991. Null mutants of Saccharomyces cerevisiae Cu, Zn superoxide dismutase: Characterization and spontaneous mutation rates. J. Bacteriol. 173: 5918-5920   DOI
33 Laemmli, U. K. 1979. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   ScienceOn
34 Toledano, M. B., A. Delaunay, B. Biteau, D. Spector, and D. Azevedo. 2003. Oxidative stress responses in yeast, pp. 241-304. In S. Hohnman, and E. H. Mager (eds.), Yeast Stress Responses. Springer-Verlag, Berlin
35 Bilinski, J., Z. Krawiec, A. Liczmanski, and J. Litwinska. 1995. Is hydroxyl radical generated by the Fenton reaction in vivo? Biochem. Biophys. Res. Commun. 130: 533- 539   DOI   ScienceOn
36 Issaq, H. J., T. D. Veenstra, T. P. Conrads, and D. Felschow. 2002. The SELDI-TOF MS approach to proteomics: Protein profiling and biomarker identification. Biochem. Biophys. Res. Commun. 292: 587-592   DOI   ScienceOn
37 Pereira, M. D., E. C. Eleutherio, and A. D. Panek. 2001. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC Microbiol. 1: 11   DOI
38 Lieu, H. Y., H. S. Song, S. N. Yang, J. H. Kim, H. J. Kim, Y. D. Park, G. S. Park, and H. Y. Kim. 2006. Identification of proteins affected by iron in Saccharomyces cerevisiae using proteome analysis. J. Microbiol. Biotechnol. 16: 946-951   과학기술학회마을