• Title/Summary/Keyword: L1 GPS 수신기

Search Result 65, Processing Time 0.036 seconds

The Analysis of Algorithm for L1/L2 Dual - Band GPS Receiver (L1/L2 듀얼 밴드 GPS 수신기의 상위 레벨 분석)

  • 김진복;송호준
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.78-81
    • /
    • 1999
  • The position and time errors of a conventional L1-band GPS receiver (1575.42MHz) are known to be about 100 m and 70 ns, respectively. These errors are mainly due to the propagation delay of GPS satellite signals through ionosphere. Various L1/L2 dual-band GPS receivers are normally used to compensate for those position and time errors by detecting an accurate propagation delay. These receivers detect the propagation delay difference between the L1 and L2 signals based on the fact that the propagation delay through ionosphere is dependent on frequency and, from which, calculate an accurate propagation delay of the GPS signals through ionosphere. In this paper, we analyzed the architecture of a L1/L2 dual-band CPS receiver by high-level simulations with Synopsys's COSSAP Tool.

  • PDF

Research of L1 GSS Receiver Performance Stabilization (신호감시국용 위성항법 L1 수신기 성능 안정화에 대한 연구)

  • Kim, Myung-Soon;Kim, Jae-Hyun;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • This research is performed to upgrade the performance and stabilize ther operation of GSS L1 receiver. One of the this research result is that the pre-development GSS receiver is amended to remove performance degradation factor so GSS L1 receiver performance enhancement is achieved. Other is that as a result of long run test, real environment test is performed and GSS L1 receiver operate under the GPS live signal receiving environment. Key result of this research is localization of GSS receiver.

Analysis of Performance of Spoofing Detection Algorithm in GPS L1 Signal (GPS L1 기만신호 검출 알고리즘 성능 분석)

  • Kim, Taehee;Kim, Jaehoon;Lee, Sanguk
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.29-35
    • /
    • 2013
  • In this paper, we investigate the type and detection methode of spoofing attack, and then analyze the performance of spoofing detection algorithm in GPS L1 signal through the simulation. Generally spoofer is different from the jammer, because the receiver can be operated and not. In case of spoofing the GPS receiver is hard to recognize the spoofing attack and can be operated normally without stopping because the spoofing signal is the mimic GPS signal. To evaluate the performance of spoofing detection algorithm, both the software based spoofing and GPS signal generator and the software based GPS receiver are implemented. In paper, we can check that spoofing signal can affect to the DLL and PLL tracking loop because code delay and doppler frequency of spoofing. The spoofing detection algorithm has been implemented using the pseudorange, signal strength and navigation solution of GPS receiver and proposed algorithm can effectively detect the spoofing signal.

Performance Test Results of GPS/Galileo Combined Receiver for GNSS Sensor Station (GNSS 신호감시국용 GPS/갈릴레오 복합수신기 성능시험결과)

  • Sin, Cheon-Sig;Lee, Sang-Uk;Yoon, Dong-Weon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.2
    • /
    • pp.10-15
    • /
    • 2011
  • 본 논문은 위성항법신호감시국용 GPS/갈릴레오 복합수신기에 대한 구현 및 성능 시험결과를 기술한 논문으로 복합수신기는 단일 플랫폼에서 갈릴레오 E1, E5a 신호와 GPS L1, L2C, L5 신호를 수신처리 할 수 있으며, GPS신호와 갈릴레오 E1 신호를 복합적으로 처리함으로써, 위치정확도가 향상됨을 보였다. 각 신호에 대한 신호획득을 신속하게 하기 위해, 모든 신호에 대해 정합필터와 FFT 방식이 결합된 방식을 적용하였고, 신호추적과정에서는 다수의 추적루프를 적용하였으며 본 논문에서는 주요 신호에 대한 신호획득 및 추적과정의 시험결과를 보였다. 또한 기존에 발표된 논문과의 차별화 항목으로, 항법신호의 수신레벨이 낮아 CW 형태와 같은 간섭신호에도 영향을 받는바, 이에 대한 개발된 항재밍 모듈에 대한 시험결과도 제시하였으며, 성능측면에서의 비교를 위해 상용수신기와 개발된 수신기와의 성능 비교 결과도 함께 제시하였다.

Analysis of GPS Software Receiver (GPS Software 수신기의 분석)

  • Zhang, Wei;Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.229-236
    • /
    • 2018
  • In this paper, we see the acquisition and tracking of L1 C/A signal on GPS receiver, do the research on GPS signal capture principle's foundation, and do the simulation of the GPS signals capture process for it's realizing and analyzing by Matlab. The simulation result, we can confirm this method's accuracy and the feasibility, and see that a satellite receiving ability play an important role in the efficiency of receiver.

Block Correlator for Real-Time GPS L1 Software Receiver (소프트웨어 기반의 실시간 GPS L1 수신기를 위한 블록 상관기)

  • Kim, Tae-Hee;Lee, Sang-Uk
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.80-85
    • /
    • 2011
  • In this paper, a software-based real-time GPS L1 receiver is proposed for the block correlation techniques. Recently various navigation satellite navigation receivers in the environment for the development of more efficient software-based real-time receiver need to be developed. It is composed of components such as signal supplier, signal acquisition, signal tracking, navigation data processing, and navigation solution. They are designed and implemented as component based software for enhancing reusability and modifiability for user to have more flexibility during development of receiver. This paper will describe design, implementation, and verification of the developed realtime software GNSS receiver.

Development of a Time Comparison System via GPS Satellites (GPS 위성을 이용한 시각비교 수신기의 개발)

  • Lee, Chang-Bok;Lee, Dong-Doo;Chung, Nak-Sam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.158-165
    • /
    • 1990
  • We have developed a L1 band (1575.42 MHz), C/A (Coarse/Acquisition) code GPS (Global Positioning System) receiver for precise time comparison and evaluated the performance of the receiver. The GPS measurements have been carried out between cesium clocks onboard the GPS satellites and the master clock of Korea Standards Research Institute (KSRI) using the GPS receiver. An accuracy of time transfer better than 100ns was obtained.

  • PDF

GPS L1, L2C Signal Acquisition Performance of GPS Software Receiver with respect to Pseudolite Pulsing Scheme (의사위성의 펄싱 방법에 대한 GPS L2C 신호획득 성 소능프분트석웨어 수신기의 L1, L2C 신호획득 성능분석)

  • Kwon, Keum-Cheol;Yand, Cheol-Kwan;Shim, Duk-Sun;Chung, Tae-Sang;Kee, Chand-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.16-26
    • /
    • 2012
  • Pseudolites are ground-based transmitters that can be configured to emit GPS-like signals for enhancing the GPS by providing increased accuracy, integrity, and availability. However, a pseudolite (PL) can interfere with GPS satellite signals while it is transmitting or cause saturation to automatic gain control circuit. To solve these problems pulsing scheme is used, which transmits PL signal during a short period of time. In this paper the effect of the number of PL and pulsing scheme on the software GPS L1 and L2C signal acquisition performance is studied for the three pulsing schemes such as static pulsing, sweep pulsing, and pseudo random pulsing. For GPS L1 signal, static pulsing shows the best signal acquisition and tracking performance with one PL, and random pulsing shows the best performance with more than or equal to two PLs. For GPS L2C signal, all three pulsing schemes show the similar signal acquisition and tracking performance, but static pulsing shows a little better performance. For GPS L1 and L2C signals, software GPS receivers can do positioning with up to three PLs.

The Improvement of the Positioning Precision for Single Frequency Receiver Using Ionospheric Model Based on GPS Network (GPS 네트워크 기반의 전리층 모델을 이용한 단일 주파수 수신기의 측위 정밀도 향상)

  • Choi Byung-Kyu;Lee Sang-Jeong;Park Jong-Uk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.167-173
    • /
    • 2006
  • Ionosphere is the largest error source on propagation of GPS signals. Dual frequency (L1,L2) GPS receiver can be effectively able to eliminate the ionosphere error by using linear combination of two frequencies, but the single frequency receiver (L1) have to compute the ionosphere error. In this research, we developed the new ionospheric model with $1^{\circ}$ by $1^{\circ}$ spatial resolution based on the grid from using 9 GPS reference stations which have been operated by KASI (Korea Astronomy and Space Science Institute) and computed TEC (Total Electron Contents) over South Korea by epoch. This paper gives the positioning results of Klobuchar model with that of a newly developed KASI regional ionospheric model and shows the positioning precision of the KASI regional ionospheric model along with TEC variation of ionosphere.

Analysis of the GPS Meaconing Signal Generator for the Live GPS L1 Signal (Live GPS L1 재방송 기만신호 생성 분석)

  • Kim, Taehee;Sin, Cheonsig
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • In this paper, we developed the hardware GPS signal generator for generating a GPS L1 meaconing signal with Live GPS signal signals and analyzed the performance of meaconing signal generator thorough the experiment. Deception of the signal, such as a re-broadcast, it is an object of the user to provide false information so as not to receive location information and accurate time. The signal just rebroadcast has the features that can be easily deceive the receiver via a delay of no received signal to the signal processing through an antenna. In this paper, the hardware for generating a signal only these rebroadcast designed and manufactured, by re-sending the received Live GPS signals, to confirm the effect of the receiver. The maximum delay time is possible up to about 2.6msec, also, has been successfully tested to be moved to the position of re-broadcasting based on maturity antenna the position of the receiver through a spaced antenna.