• Title/Summary/Keyword: L. plantarum K25

Search Result 60, Processing Time 0.024 seconds

Enhanced DPPH Radical Scavenging Activity of Lactobacillus plantarum K-21 Isolated from Kimchi and its Various Antioxidant Effects (김치유래 Lactobacillus plantarum K-21의 DPPH 라디칼 제거활성 증진 및 다양한 항산화 효과)

  • Kim, Yerin;Kim, Yedam;Jeon, Chae-Min;Park, Gyulim;Lee, O-Mi;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.31 no.8
    • /
    • pp.715-725
    • /
    • 2022
  • Lactic Acid Bacteria (LAB) are among the representative probiotics that have been used for a long time in fermented food. Although there are many studies on detecting the radical scavenging activity of LAB, few studies have been conducted on the environmental factors that improve scavenging activity. This study investigated the environmental factors affecting the DPPH radical scavenging and various antioxidant activities of Kimchi-derived Lactobacillus plantarum K-21 with antihypertensive and radical scavenging activities. The optimal conditions for scavenging DPPH radicals were glucose 2%, bactopeptone 0.5%, Tween 80 0.05%, L-cysteine 0.05%, and an initial pH 6.5 at 35℃. Under optimal conditions, the DPPH radical scavenging activity was 94.8±2.2%, which was 1.5 times higher than that of the basic medium. In addition, L. plantarum K-21 had other antioxidant activities; ABTS radical scavenging (93.6±1.5%), hydroxyl radical scavenging (8.5±0.9%), metal chelating (65.9±0.5%), NO scavenging (53.1±19%), SOD-like (25.1±1.5%), and reducing power (11.7±1.4%) activities were detected. Therefore, L. plantarum K-21 may act not only as a starter for lactic acid-fermented foods with improved functionality but also as a drug for various diseases caused by oxidative stress.

Antioxidant activity and polyphenol content of fermented Sparassis latifolia extracts (꽃송이버섯 발효물의 항산화 활성 및 폴리페놀 함량 변화)

  • Yang, Seung-Hwa;Lee, Yong-Jo;Kim, Da-Song;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.268-274
    • /
    • 2019
  • Sparassis latifolia is a useful medicinal mushroom that has recently gained popularity in Asia. It has a rich flavor and is a good source of nutrients contains a large number of polyphenols for a functional food or dietary supplement. In addition, S. latifolia is rich in beta-glucan and gamma-aminobutyric acid (GABA). These two compounds have been reported to show immune-stimulating and anticancer effects by numerous studies. In this study, four species of lactic acid bacteria (Lactobacillus plantarum subsp. plantarum, L. acidophilus, L. helveticus, and L. delbrueckii subsp. bulgaricus) were used to ferment the fruiting body of S. latifolia. Fermented S. latifolia extracts were found to have a higher polyphenol content and antioxidant activity following fermentation as well as increased protease activity.

Isolating Microorganisms to Ferment Traditional Cheongtaejeon (발효차 청태전 제조용 미생물의 분리)

  • Park, Jung-Suk;Cho, Jung-Il
    • Journal of the Korean Society of Food Culture
    • /
    • v.26 no.2
    • /
    • pp.190-197
    • /
    • 2011
  • Chungtaejeon is a traditional tea introduced in the age of the Three States and is the only "Don-cha" culture in the world that survived on the southwestern shore of Korea. To restore Chungtaejeon and to make the tea with consistent quality, the microorganisms involved in traditional type fermentation of Chungtaejeon were isolated, and the tea was prepared with high fermentation ability starters. The sensuous characteristics of Chungtaejeon were also examined. Only Bacilli were found in 3 and 5 year aged Chungtaejeon samples. The Lactobacilli were isolated from properly fermented kimchi and one of them showed high growth capability in media containing green tea extract and also showed strong antagonistic activity against methicillin-resistant Staphylococcus aureus, S. aureus, Salmonella, and E. coli. It was identified and named Lactobacillus plantarum CHO25. Chungtaejeon was fermented with a single starter of L. plantarum CHO25 and with a mixed starter (L. plantarum CHO25, Saccharomyces cerevisiae and Bacillus amyloliquefaciens CHO104). The single fermented sample had the highest cell growth after 5 days of inoculation and the level decreased slowly thereafter. The mixed fermented sample showed strong growth of S. cerevisiae. The highest hunter values were the a value of the single fermented sample and the b value of the mixed sample. The single fermented tea showed the best incense score.

Bactericidal Effect of Bacteriocin of Lactobacillus plantarum K11 Isolated from Dongchimi on Escherichia coli O157

  • Lim, Sung-Mee;Im, Dong-Soon
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.3
    • /
    • pp.151-158
    • /
    • 2007
  • Among 68 strains of lactic acid bacteria (LAB) isolated from Dongchimi, a strain K11 was selected due to its bactericidal activity against Escherichia coli O157 The strain K11 was identified as Lactobacillus plantarum, based on physiological and biochemical characteristics. In the late exponential phase, La. plantarum K11 showed maximum bacteriocin activity (12,800 BU/mL) and maintained until the early stationary phase. The bacteriocin activity was completely inactivated by all the proteolytic enzymes such as pepsin, protease, proteinase K, papain, chymotrypsin, and trypsin, but the activity was not affected by catalase, a-amylase, lysozyme, and lipase, suggesting proteinaceous nature of the bacteriocin. Additionally, this activity was not affected in the pH range from 3.0 to 9.0 and under storage conditions like 30 days at -20,4, or $25^{\circ}C$. Although the bacteriocin activity was absolutely lost after 15 min treatment at 121, it was relatively stable at $70^{\circ}C$ for 60 min or $100^{\circ}C$ for 30 min. The activity was disappeared by treatment with acetone, benzene, ethanol, or methanol, but it was not affected by treatment with chloroform or hexane. The antibacterial activity of the bacteriocin was good against some LAB including Lactobacillus spp., Enterococcus spp., and Streptococcus spp., but not against food-borne pathogens such as Bacillus spp., Listeria spp., and Staphylococcus spp. as well as yeasts and molds. Especially, some intestinal bacteria such as Enterobacter aerogenes and E. coli were significantly affected by the bacteriocin of La, plantarum K11. Furthermore, the addition of 640 BU/mL resulted in the complete clearance of E. coli O157 after 10 hr.

From food wastes into useful probiotics: Development of Lactic acid bacteria as useful probiotics for animal feed without antibiotics using food waste (음식물류폐기물의 자원화를 위한 항세균 활성 유산균의 개발)

  • Seo, Jeong-Yong;Song, In-Geun;Lee, Dae-Gyu;Lee, Ki-Young;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.2
    • /
    • pp.112-120
    • /
    • 2006
  • For the conversion of food waste into a good recycling material such as animal feed without antibiotics, thirteen lactic acid bacteria, which can be used as good probiotics for animal feed, were isolated from the intestine and feces in pigs. All isolates showed strong tolerance to high salt (4% of NaCl), acid(pH4.0), and bile juice (0.8% of oxgall). The growth rate was best at $37^{\circ}C$ in all strains. Among the isolates, Lactobacillus plantarum CJY-22, L. brevis CJY-42, L. arizonensis CJY-3, and Pediococcus sp. CJY-41 showed higher and broader spectrum of antimicrobial activities against six different pathogens such as Salmonella, typhimurium. L. plantarum CJY-22 has also grown well at $25^{\circ}C$, making this strain as an appropriate candidate for the fermentation of food waste at room temperature, thus conducting the fermentation process cost-effectively.

  • PDF

Microbial Dynamics of Commercial Makgeolli Depending on the Storage Temperature

  • Kim, Hye-Ryun;Lee, Ae Ran;Kim, Jae-Ho;Ahn, Byung-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1101-1106
    • /
    • 2012
  • Market fresh makgeolli was stored at different temperatures of $4^{\circ}C$ and $25^{\circ}C$ to assess the change of the microbial diversity according to the storage temperature and period. Yeast counts increased until day 3 of storage and decreased thereafter. General and lactic acid bacterial counts continuously increased during storage. The data indicated that the control of growth of microorganisms, particularly general bacteria and lactic acid bacteria (LAB), is essential. Total acid levels started to decrease in the makgeolli stored at $4^{\circ}C$, and increased from day 6 of storage in the makgeolli stored at $25^{\circ}C$. The increase of total acid in the non-refrigerated condition greatly affected the quality of makgeolli. In both the fresh makgeolli samples stored at $4^{\circ}C$ and $25^{\circ}C$, yeast (Saccharomyces cerevisiae) and molds (Aspergillus tubingensis, Candida glaebosa, and Aspergillus niger) were noted. Denaturing gradient gel electrophoresis (DGGE) band patterns were almost constant regardless of the storage period. As for bacteria, Lactobacillus crustorum, L. brevis, and Microlaena stipoides were found in the makgeolli stored at $4^{\circ}C$, and L. crustorum, Lactobacillus sp., L. plantarum, L. brevis, L. rhamnosus, and L. similis were found in the makgeolli stored at $25^{\circ}C$. In particular, in the makgeolli stored at $25^{\circ}C$, L. crustorum and L. plantarum presented dark bands and were identified as the primary microorganisms that affected spoilage of fresh makgeolli.

Characterization and Antimicrobial Activity of Lactic Acid Bacteria Isolated from Vaginas of Women of Childbearing Age (가임기 여성의 질에서 분리한 젖산 세균인 Lactobacillus plantarum UK-3의 특성 및 항균활성)

  • Ahn, Hye-Ran;So, Jae-Seong;Oh, Kye-Heon
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.308-315
    • /
    • 2011
  • The purpose of this work was to examine the antimicrobial activity derived from the lactic acid bacterium, UK-3 isolated from the vaginas of women of childbearing age. Various physiological and biochemical properties of this strain were characterized. Both the BIOLOG system and phylogenetic analysis using 16S rRNA sequencing were utilized for identification, and the strain was designated as Lactobacillus plantarum UK-3, and registered in GenBank as [JK266589]. Growth rate, production of organic acids (e.g., lactic acid and acetic acid), and pH during growth were monitored. The maximum concentrations of lactic acid and acetic acid were approximately 684.11 mM and 174.26 mM, respectively, and pH changed from 7.0 to 3.7 after 72 h of incubation. High performance liquid chromatography was used to confirm lactic acid and acetic acid production. Significant antimicrobial activity of the concentrated supernatant was demonstrated against various Gram-positive (e.g., Staphylococcus aureus, Staphylococcus epidermidis, Methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, Neisseria species., Listeria monocytogenes), Gram-negative bacteria (e.g., Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis), and yeast (e.g., Candida albicans) by the plate diffusion method. As a result, the concentrated L. plantarum UK-3 cultures had lower acidity and inhibited the growth of all microorganisms tested, whereas the growth of L. acidophilus was not affected.

Effect of Lithospermum erythrorhizon, Glycyrrhiza uralensis and Dipping of Chitosan on Shelf-life of Kimchi (김치의 보존성 증진을 위한 자초.감초의 혼합 첨가와 Chitosan 침지 효과)

  • Lee, Shin-Ho;Jo, Ok-Ki
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1367-1372
    • /
    • 1998
  • The studies were carried out to investigative effects of Lithospermum erythrorhizon, Glycyrrhiza uralensis 3% (LG) with and without dipping of salted Chinese cabbage in 1% chitosan solution(LGDC) on fermentation of kimchi at $10^{\circ}C$ during 25 days. The pH and titratable acidity of kimchi with LG and LGDC were higher and lower, respectively, than that of control. Viable cells of total bacteria, lactic acid bacteria, Leuconostoc sp. and Lactobacillus plantarum in kimchi added with LG and LGDC were shown inhibitory effect about $1.6{\sim}2.1,\;1.2{\sim}2.9,\;0.8{\sim}2.2,\;0.7{\sim}1.6$ log10 cycle, respectively. Specially Leuconostoc sp. and L. plantarum was very inhibited than in control from 0 day. The sour taste of LG and LGDC added kimchi was changed more slowly than that of control during fermentation of kimchi. But flavor, color and overall acceptability did not show significant difference(P<0.05) between treatments. The shelf-life of LGDC added kimchi was extended over 10 days compared with control.

  • PDF

Nonthermal Pasteurization of Lactic acid bacteria by High Intensity Light Pulse (광 펄스에 의한 젖산균의 비열 살균)

  • Cho, Hyung-Yong;Shin, Jung-Kue;Song, Young-Ae;Yoon, Seon-Joo;Kim, Joong-Man;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.631-636
    • /
    • 2002
  • Lethality of high intensity light pulse on the pre-determined microbial populations has been investigated. Prior to the treatment, Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc mesenteroides and Pediococcus pentosaceus were cultivated separately onto the surface of Lactobacilli MRS agar. Pre-determined microbial populations were applied to the test media and these sample were exposed to high intense light source with an exposure time ranging from 1 to $2500\;{\mu}s$. Results showed that at least 200 light pulses of $1\;{\mu}s$ duration were required to reduce L. Plantarum cells by 90% at 25 kV, the greater the number of light pulses, the larger the reduction in viable cell numbers. Viable cells of L. plantarum and the others were reduced by more than 5 and 6 log cycles at the upper exposure level of $750\;{\mu}s$, respectively. These study shows that pulsed light emissions can significantly reduce populations of lactic acid bacteria on exposed surface with exposure times. Killing efficiency for L. plantarum significantly increased with decreasing the distance between the lamp and the surface of samples.

Cold-Stress Response of Probiotic Lactobacillus plantarum K25 by iTRAQ Proteomic Analysis

  • Liu, Shaoli;Ma, Yimiao;Zheng, Yi;Zhao, Wen;Zhao, Xiao;Luo, Tianqi;Zhang, Jian;Yang, Zhennai
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.187-195
    • /
    • 2020
  • To understand the molecular mechanism involved in the survivability of cold-tolerant lactic acid bacteria was of great significance in food processing, since these bacteria play a key role in a variety of low-temperature fermented foods. In this study, the cold-stress response of probiotic Lactobacillus plantarum K25 isolated from Tibetan kefir grains was analyzed by iTRAQ proteomic method. By comparing differentially expressed (DE) protein profiles of the strain incubated at 10℃ and 37℃, 506 DE proteins were identified. The DE proteins involved in carbohydrate, amino acid and fatty acid biosynthesis and metabolism were significantly down-regulated, leading to a specific energy conservation survival mode. The DE proteins related to DNA repair, transcription and translation were up-regulated, implicating change of gene expression and more protein biosynthesis needed in response to cold stress. In addition, two-component system, quorum sensing and ABC (ATP-binding cassette) transporters also participated in cell cold-adaptation process. These findings provide novel insight into the cold-resistance mechanism in L. plantarum with potential application in low temperature fermented or preserved foods.