DOI QR코드

DOI QR Code

Enhanced DPPH Radical Scavenging Activity of Lactobacillus plantarum K-21 Isolated from Kimchi and its Various Antioxidant Effects

김치유래 Lactobacillus plantarum K-21의 DPPH 라디칼 제거활성 증진 및 다양한 항산화 효과

  • Kim, Yerin (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University) ;
  • Kim, Yedam (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University) ;
  • Jeon, Chae-Min (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University) ;
  • Park, Gyulim (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University) ;
  • Lee, O-Mi (Avian Disease Division, Animal and Plant Quarantine Agency) ;
  • Son, Hong-Joo (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University)
  • 김예린 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 김예담 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 전채민 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 박규림 (부산대학교 생명환경화학과 및 생명산업융합연구원) ;
  • 이오미 (농림축산검역본부 조류세균과) ;
  • 손홍주 (부산대학교 생명환경화학과 및 생명산업융합연구원)
  • Received : 2022.07.05
  • Accepted : 2022.07.29
  • Published : 2022.08.31

Abstract

Lactic Acid Bacteria (LAB) are among the representative probiotics that have been used for a long time in fermented food. Although there are many studies on detecting the radical scavenging activity of LAB, few studies have been conducted on the environmental factors that improve scavenging activity. This study investigated the environmental factors affecting the DPPH radical scavenging and various antioxidant activities of Kimchi-derived Lactobacillus plantarum K-21 with antihypertensive and radical scavenging activities. The optimal conditions for scavenging DPPH radicals were glucose 2%, bactopeptone 0.5%, Tween 80 0.05%, L-cysteine 0.05%, and an initial pH 6.5 at 35℃. Under optimal conditions, the DPPH radical scavenging activity was 94.8±2.2%, which was 1.5 times higher than that of the basic medium. In addition, L. plantarum K-21 had other antioxidant activities; ABTS radical scavenging (93.6±1.5%), hydroxyl radical scavenging (8.5±0.9%), metal chelating (65.9±0.5%), NO scavenging (53.1±19%), SOD-like (25.1±1.5%), and reducing power (11.7±1.4%) activities were detected. Therefore, L. plantarum K-21 may act not only as a starter for lactic acid-fermented foods with improved functionality but also as a drug for various diseases caused by oxidative stress.

Keywords

References

  1. Angmo, K., Kumari, A., Savitri, Bhalla, T. C., 2016, Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh, LWT, 66, 428-435. https://doi.org/10.1016/j.lwt.2015.10.057
  2. Aruoma, O. I., 1994, Nutrition and health aspects of free radicals and antioxidants, Food Chem. Toxicol., 32, 671-754. https://doi.org/10.1016/0278-6915(94)90011-6
  3. Blois, M. S., 1958, Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199-1200. https://doi.org/10.1038/1811199a0
  4. Brock, T. D., Madigan, M. T., Martinko, J. M., Parker, J., 2003, Brock biology of microorganisms, Upper Saddle River (NJ), Prentice-Hall, New Jersey.
  5. Cha, J. Y., Kim, H. J., Jun, B. S., Park, J. C., Ok, M., Cho, Y. S., 2003, Antioxidative activity and produced condition of antioxidative substance by Bacillus sp. FF-7, J. Kor. Soc. Agric. Chem. Biotechnol., 46, 165-170.
  6. Chang, B. Y., Han, J. H., Kim, J. H., Cha, B. S., Ann, S. H., Kim, S. Y., 2015, Application of a Undaria pinnatifida for industrial cultivation of Lactobacillus , Kor. J. Food Preserv., 22, 251-255. https://doi.org/10.11002/kjfp.2015.22.2.251
  7. Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K., Nokihara, K., 1998, Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein, J. Agric. Food Chem., 46, 49-53. https://doi.org/10.1021/jf970649w
  8. Chiang, S. S., Pan, T. M., 2012, Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products, Appl. Microbiol. Biotechnol., 93, 903-916. https://doi.org/10.1007/s00253-011-3753-x
  9. Chooruk, A., Piwat, S., Teanpaisan, R., 2017, Antioxidant activity of various oral Lactobacillus strains, J. Appl. Microbiol., 123, 271-279. https://doi.org/10.1111/jam.13482
  10. Demple, B., Hidalgo, E., Ding, H., 1999, Transcriptional regulation via redox-sensitive iron-sulphur centres in an oxidative stress response, Biochem. Soc. Symp., 64, 119-128.
  11. Figueroa-Gonzalez, I., Cruz-Guerrero, A., Quijano, G., 2011, The benefits of probiotics on human health, J. Microbial. Biochem. Technol. S1, 1948-5948.
  12. Frlich, I., Riederer, P., 1995, Free radical mechanisms in dementia of Alzheimer type and the potential for antioxidant treatment, Drug Res., 45, 443-449.
  13. Fuller, R., 1991, Probiotics in human medicine, Gut, 32, 439-451. https://doi.org/10.1136/gut.32.4.439
  14. GokturkBaydar, O. G., Yasar, S., 2007, Evaluation of the antiradical and antioxidant potential of grape extracts, Food Control, 18, 1131-1136. https://doi.org/10.1016/j.foodcont.2006.06.011
  15. Gubelt, A., Blaschke, L., Hahn, T., Rupp, S., Hirth, T., Zibek, S., 2020, Comparison of different Lactobacilli regarding substrate utilization and their tolerance towards lignocellulose degradation products, Curr. Microbiol., 77, 3136-3146. https://doi.org/10.1007/s00284-020-02131-y
  16. Halliwell, B., Gutteridge, J. M. C., Aruoma, O. I., 1987, The deoxyribose method: A simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals, Anal. Biochem., 165, 215-219. https://doi.org/10.1016/0003-2697(87)90222-3
  17. Halliwell, B., Gutteridge, J., Cross, C., 1992, Free radicals, antioxidants and human disease: where are we now? J. Lab. Clin. Med., 119, 598-615.
  18. Hettiarachy, N. S., Glenn, K. C., Gnanasambandam, R., Johnson, M. G., 1996, Natural antioxidant extract from fenugreek (Trigonella foenum-graecum ) for ground beef patties, J. Food Sci., 61, 516-519. https://doi.org/10.1111/j.1365-2621.1996.tb13146.x
  19. Kaizu, M., Sasaki, M., Nakajima, H., Suzuki, Y., 1993, Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E, J. Dairy Sci., 76, 2493-2499. https://doi.org/10.3168/jds.S0022-0302(93)77584-0
  20. Kim, D. Y., Kim, H. S., Yoo, J. S., Cho, Y. A., Kim, C. H., 2020, Antioxidant activity of lactic acid bacteria isolated from Korean traditional food Kimchi, Dairy Sci. Biotechnol., 38, 89-97. https://doi.org/10.22424/jdsb.2020.38.2.89
  21. Kim, G. Y., Park, J. I., Kwon, I. K., Ahn, J. K., Goh, J. S., 1992, Stimulated fermentation of ultrafiltration retentate of nilk by Lactobacillus acidophilus , Streptococcus thermophilus , Kor. J. Dairy Sci., 14, 148-158.
  22. Kullisaar, T., Zilmer, M., Mikelsaar, M., Vihalemm, T., Annuk, H., Kairane, C., Kilk, A., 2002, Two antioxidative lactobacilli strains as promising probiotics, Int. J. Food Microbiol., 72, 215-224. https://doi.org/10.1016/S0168-1605(01)00674-2
  23. Lee, J. H., Chae, M. S., Choi, G. H., Lee, N. K., Paik, H. D., 2009, Optimization of medium composition for production of the antioxidant substances by Bacillus polyfermenticus SCD using response surface methodology, Food Sci. Biotechnol., 13, 959-964.
  24. Lee, N. R., Woo, G. Y., Jang, J. H., Lee, S. M., Go, T. H., Lee, H. S., Hwang, D. Y., Son, H. J., 2013, Antioxidant production by Bacillus methylotrophicus isolated from Chungkookjang, Korean traditional fermented food, J. Environ. Sci. Int., 22, 855-862. https://doi.org/10.5322/JESI.2013.22.7.855
  25. Lee, S. J., Kim, W. Y., Moon, Y. H., Kim, H. S., Kim, K. H., Ha, J. K., Lee, S. S., 2007, Effects of non-ionic surfactant Tween 80 on the in vitro gas production, dry matter digestibility, enzyme activity and microbial growth rate by rumen mixed microorganisms, J. Life. Sci., 17, 1660-1668. https://doi.org/10.5352/JLS.2007.17.12.1660
  26. Lee, S. M., 2010, Cultural conditions and nutritional components affecting the growth and bacteriocin production of Lactobacillus plantarum KC21, Food Sci. Biotechnol., 19, 793-802. https://doi.org/10.1007/s10068-010-0111-1
  27. Li, S., Zhao, Y., Zhang, L., Zhang, X., Huang, L., Li, D., Niu, C., Yang, Z., Wang, Q., 2012, Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods, Food Chem., 135, 1914-1919. https://doi.org/10.1016/j.foodchem.2012.06.048
  28. Luo, D., Fang, B., 2008, Structural identification of ginseng polysaccharides and testing of their antioxidant activities, Carbohydr. Polym., 72, 376-381. https://doi.org/10.1016/j.carbpol.2007.09.006
  29. Marcocci, L., Maguire, J. J., Droylefaix, M. T., Packer, L., 1994, The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761, Biochem. Biophys. Res. Commun., 201, 748-755. https://doi.org/10.1006/bbrc.1994.1764
  30. Marklund, S., Marklund, G., 1974, Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase, Eur. J. Biochem., 47, 469-474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  31. Oyaizu, M., 1986, Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine, Jpn. J. Nutr., 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  32. Park, S. B., Kim, J. D., Lee, N. R., Jeong, J. H., Jeong, S. Y., Lee, H. S., Hwang, D. Y., Lee, J. S., Son, H. J., 2011, Isolation and characterization of lactic acid bacteria with angiotensin-converting enzyme inhibitory and antioxidative activities, J. Life Sci., 21, 1428-1433. https://doi.org/10.5352/JLS.2011.21.10.1428
  33. Pedersen, M. B., Gaudu, P., Lechardeur, D., Petit, M. A., Gruss, A., 2012, Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology, Annu. Rev. Food Sci. Technol., 3, 37-58. https://doi.org/10.1146/annurev-food-022811-101255
  34. Pena-Ramos, E. A., Xiong, Y. L., Arteaga, G. E., 2004, Fractionation and characterization for antioxidant activity of hydrolyzed whey protein, J. Sci. Food Agric., 84, 1908-1918. https://doi.org/10.1002/jsfa.1886
  35. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C., 1999, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biol. Med., 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  36. Ridnour, L. A., Isenberg, J. S., Espey, M. G., Thomas, D. D., Roberts, D. D., Wink, D. A., 2005, Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1, Proc. Natl. Acad. Sci. U.S.A., 102, 13147-13152. https://doi.org/10.1073/pnas.0502979102
  37. Salminen, S., Deighton, M. A., Benno, Y., Gorbach, S. L., 1998, Lactic acid bacteria in health and disease, Marcel Dekker, New York.
  38. Shehata, M. G., Abu-Serie, M. M., El-Aziz, M. A., El-Sohaimy, S. A., 2019, In vitro assessment of antioxidant, antimicrobial and anticancer properties of lactic acid bacteria, Int. J. Pharmacol., 15, 651-663. https://doi.org/10.3923/ijp.2019.651.663
  39. Song, S. U., Kim, T. B., Ji, G. E., Oh, H. I., Oh, D. K., 2002, High density cell culture of Bifidobacterium by optimization of medium composition and culture conditions, Kor. J. Microbiol. Biotechnol., 30, 63-67.
  40. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., Telser J., 2007, Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol., 2007, 39, 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  41. Vyas, P., Rahi, P., Chadh, B. S., Gulati, A., 2014, Statistical optimization of medium components for mass production of plant growth-promoting microbial inoculant Pseudomonas trivialis BIHB 745 (MTCC5336), Ind. J. Microbiol., 54, 239-241. https://doi.org/10.1007/s12088-013-0425-9
  42. Wang, L., Xiong, Y. L., 2005, Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability, J. Agric. Food Chem., 53, 9186-9192. https://doi.org/10.1021/jf051213g
  43. Zhang, L., Zhao, B., Liu, C. J., Yang, E., 2020, Optimization of biosynthesis conditions for the production of exopolysaccharides by Lactobacillus plantarum SP8 and the exopolysaccharides antioxidant activity test, Ind. Microbiol., 60, 334-345. https://doi.org/10.1007/s12088-020-00865-8