Browse > Article
http://dx.doi.org/10.5322/JESI.2022.31.8.715

Enhanced DPPH Radical Scavenging Activity of Lactobacillus plantarum K-21 Isolated from Kimchi and its Various Antioxidant Effects  

Kim, Yerin (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University)
Kim, Yedam (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University)
Jeon, Chae-Min (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University)
Park, Gyulim (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University)
Lee, O-Mi (Avian Disease Division, Animal and Plant Quarantine Agency)
Son, Hong-Joo (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University)
Publication Information
Journal of Environmental Science International / v.31, no.8, 2022 , pp. 715-725 More about this Journal
Abstract
Lactic Acid Bacteria (LAB) are among the representative probiotics that have been used for a long time in fermented food. Although there are many studies on detecting the radical scavenging activity of LAB, few studies have been conducted on the environmental factors that improve scavenging activity. This study investigated the environmental factors affecting the DPPH radical scavenging and various antioxidant activities of Kimchi-derived Lactobacillus plantarum K-21 with antihypertensive and radical scavenging activities. The optimal conditions for scavenging DPPH radicals were glucose 2%, bactopeptone 0.5%, Tween 80 0.05%, L-cysteine 0.05%, and an initial pH 6.5 at 35℃. Under optimal conditions, the DPPH radical scavenging activity was 94.8±2.2%, which was 1.5 times higher than that of the basic medium. In addition, L. plantarum K-21 had other antioxidant activities; ABTS radical scavenging (93.6±1.5%), hydroxyl radical scavenging (8.5±0.9%), metal chelating (65.9±0.5%), NO scavenging (53.1±19%), SOD-like (25.1±1.5%), and reducing power (11.7±1.4%) activities were detected. Therefore, L. plantarum K-21 may act not only as a starter for lactic acid-fermented foods with improved functionality but also as a drug for various diseases caused by oxidative stress.
Keywords
Antioxidant activity; DPPH radical scavenging activity; L. plantarum; Starter;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Chiang, S. S., Pan, T. M., 2012, Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products, Appl. Microbiol. Biotechnol., 93, 903-916.   DOI
2 Figueroa-Gonzalez, I., Cruz-Guerrero, A., Quijano, G., 2011, The benefits of probiotics on human health, J. Microbial. Biochem. Technol. S1, 1948-5948.
3 Frlich, I., Riederer, P., 1995, Free radical mechanisms in dementia of Alzheimer type and the potential for antioxidant treatment, Drug Res., 45, 443-449.
4 GokturkBaydar, O. G., Yasar, S., 2007, Evaluation of the antiradical and antioxidant potential of grape extracts, Food Control, 18, 1131-1136.   DOI
5 Halliwell, B., Gutteridge, J., Cross, C., 1992, Free radicals, antioxidants and human disease: where are we now? J. Lab. Clin. Med., 119, 598-615.
6 Hettiarachy, N. S., Glenn, K. C., Gnanasambandam, R., Johnson, M. G., 1996, Natural antioxidant extract from fenugreek (Trigonella foenum-graecum ) for ground beef patties, J. Food Sci., 61, 516-519.   DOI
7 Kim, D. Y., Kim, H. S., Yoo, J. S., Cho, Y. A., Kim, C. H., 2020, Antioxidant activity of lactic acid bacteria isolated from Korean traditional food Kimchi, Dairy Sci. Biotechnol., 38, 89-97.   DOI
8 Lee, N. R., Woo, G. Y., Jang, J. H., Lee, S. M., Go, T. H., Lee, H. S., Hwang, D. Y., Son, H. J., 2013, Antioxidant production by Bacillus methylotrophicus isolated from Chungkookjang, Korean traditional fermented food, J. Environ. Sci. Int., 22, 855-862.   DOI
9 Lee, S. M., 2010, Cultural conditions and nutritional components affecting the growth and bacteriocin production of Lactobacillus plantarum KC21, Food Sci. Biotechnol., 19, 793-802.   DOI
10 Li, S., Zhao, Y., Zhang, L., Zhang, X., Huang, L., Li, D., Niu, C., Yang, Z., Wang, Q., 2012, Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods, Food Chem., 135, 1914-1919.   DOI
11 Marcocci, L., Maguire, J. J., Droylefaix, M. T., Packer, L., 1994, The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761, Biochem. Biophys. Res. Commun., 201, 748-755.   DOI
12 Park, S. B., Kim, J. D., Lee, N. R., Jeong, J. H., Jeong, S. Y., Lee, H. S., Hwang, D. Y., Lee, J. S., Son, H. J., 2011, Isolation and characterization of lactic acid bacteria with angiotensin-converting enzyme inhibitory and antioxidative activities, J. Life Sci., 21, 1428-1433.   DOI
13 Pedersen, M. B., Gaudu, P., Lechardeur, D., Petit, M. A., Gruss, A., 2012, Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology, Annu. Rev. Food Sci. Technol., 3, 37-58.   DOI
14 Kim, G. Y., Park, J. I., Kwon, I. K., Ahn, J. K., Goh, J. S., 1992, Stimulated fermentation of ultrafiltration retentate of nilk by Lactobacillus acidophilus , Streptococcus thermophilus , Kor. J. Dairy Sci., 14, 148-158.
15 Chooruk, A., Piwat, S., Teanpaisan, R., 2017, Antioxidant activity of various oral Lactobacillus strains, J. Appl. Microbiol., 123, 271-279.   DOI
16 Gubelt, A., Blaschke, L., Hahn, T., Rupp, S., Hirth, T., Zibek, S., 2020, Comparison of different Lactobacilli regarding substrate utilization and their tolerance towards lignocellulose degradation products, Curr. Microbiol., 77, 3136-3146.   DOI
17 Wang, L., Xiong, Y. L., 2005, Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability, J. Agric. Food Chem., 53, 9186-9192.   DOI
18 Kullisaar, T., Zilmer, M., Mikelsaar, M., Vihalemm, T., Annuk, H., Kairane, C., Kilk, A., 2002, Two antioxidative lactobacilli strains as promising probiotics, Int. J. Food Microbiol., 72, 215-224.   DOI
19 Marklund, S., Marklund, G., 1974, Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase, Eur. J. Biochem., 47, 469-474.   DOI
20 Lee, J. H., Chae, M. S., Choi, G. H., Lee, N. K., Paik, H. D., 2009, Optimization of medium composition for production of the antioxidant substances by Bacillus polyfermenticus SCD using response surface methodology, Food Sci. Biotechnol., 13, 959-964.
21 Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., Telser J., 2007, Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol., 2007, 39, 44-84.   DOI
22 Oyaizu, M., 1986, Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine, Jpn. J. Nutr., 44, 307-315.   DOI
23 Pena-Ramos, E. A., Xiong, Y. L., Arteaga, G. E., 2004, Fractionation and characterization for antioxidant activity of hydrolyzed whey protein, J. Sci. Food Agric., 84, 1908-1918.   DOI
24 Salminen, S., Deighton, M. A., Benno, Y., Gorbach, S. L., 1998, Lactic acid bacteria in health and disease, Marcel Dekker, New York.
25 Kaizu, M., Sasaki, M., Nakajima, H., Suzuki, Y., 1993, Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E, J. Dairy Sci., 76, 2493-2499.   DOI
26 Zhang, L., Zhao, B., Liu, C. J., Yang, E., 2020, Optimization of biosynthesis conditions for the production of exopolysaccharides by Lactobacillus plantarum SP8 and the exopolysaccharides antioxidant activity test, Ind. Microbiol., 60, 334-345.   DOI
27 Angmo, K., Kumari, A., Savitri, Bhalla, T. C., 2016, Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh, LWT, 66, 428-435.   DOI
28 Halliwell, B., Gutteridge, J. M. C., Aruoma, O. I., 1987, The deoxyribose method: A simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals, Anal. Biochem., 165, 215-219.   DOI
29 Lee, S. J., Kim, W. Y., Moon, Y. H., Kim, H. S., Kim, K. H., Ha, J. K., Lee, S. S., 2007, Effects of non-ionic surfactant Tween 80 on the in vitro gas production, dry matter digestibility, enzyme activity and microbial growth rate by rumen mixed microorganisms, J. Life. Sci., 17, 1660-1668.   DOI
30 Luo, D., Fang, B., 2008, Structural identification of ginseng polysaccharides and testing of their antioxidant activities, Carbohydr. Polym., 72, 376-381.   DOI
31 Aruoma, O. I., 1994, Nutrition and health aspects of free radicals and antioxidants, Food Chem. Toxicol., 32, 671-754.   DOI
32 Blois, M. S., 1958, Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199-1200.   DOI
33 Brock, T. D., Madigan, M. T., Martinko, J. M., Parker, J., 2003, Brock biology of microorganisms, Upper Saddle River (NJ), Prentice-Hall, New Jersey.
34 Shehata, M. G., Abu-Serie, M. M., El-Aziz, M. A., El-Sohaimy, S. A., 2019, In vitro assessment of antioxidant, antimicrobial and anticancer properties of lactic acid bacteria, Int. J. Pharmacol., 15, 651-663.   DOI
35 Chen, H. M., Muramoto, K., Yamauchi, F., Fujimoto, K., Nokihara, K., 1998, Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein, J. Agric. Food Chem., 46, 49-53.   DOI
36 Demple, B., Hidalgo, E., Ding, H., 1999, Transcriptional regulation via redox-sensitive iron-sulphur centres in an oxidative stress response, Biochem. Soc. Symp., 64, 119-128.
37 Fuller, R., 1991, Probiotics in human medicine, Gut, 32, 439-451.   DOI
38 Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C., 1999, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biol. Med., 26, 1231-1237.   DOI
39 Ridnour, L. A., Isenberg, J. S., Espey, M. G., Thomas, D. D., Roberts, D. D., Wink, D. A., 2005, Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1, Proc. Natl. Acad. Sci. U.S.A., 102, 13147-13152.   DOI
40 Song, S. U., Kim, T. B., Ji, G. E., Oh, H. I., Oh, D. K., 2002, High density cell culture of Bifidobacterium by optimization of medium composition and culture conditions, Kor. J. Microbiol. Biotechnol., 30, 63-67.
41 Vyas, P., Rahi, P., Chadh, B. S., Gulati, A., 2014, Statistical optimization of medium components for mass production of plant growth-promoting microbial inoculant Pseudomonas trivialis BIHB 745 (MTCC5336), Ind. J. Microbiol., 54, 239-241.   DOI
42 Cha, J. Y., Kim, H. J., Jun, B. S., Park, J. C., Ok, M., Cho, Y. S., 2003, Antioxidative activity and produced condition of antioxidative substance by Bacillus sp. FF-7, J. Kor. Soc. Agric. Chem. Biotechnol., 46, 165-170.
43 Chang, B. Y., Han, J. H., Kim, J. H., Cha, B. S., Ann, S. H., Kim, S. Y., 2015, Application of a Undaria pinnatifida for industrial cultivation of Lactobacillus , Kor. J. Food Preserv., 22, 251-255.   DOI