• Title/Summary/Keyword: L-functions

Search Result 1,391, Processing Time 0.034 seconds

ON AN L-VERSION OF A PEXIDERIZED QUADRATIC FUNCTIONAL INEQUALITY

  • Chung, Jae-Young
    • Honam Mathematical Journal
    • /
    • v.33 no.1
    • /
    • pp.73-84
    • /
    • 2011
  • Let f, g, h, k : $\mathbb{R}^n{\rightarrow}\mathbb{C}$ be locally integrable functions. We deal with the $L^{\infty}$-version of the Hyers-Ulam stability of the quadratic functional inequality and the Pexiderized quadratic functional inequality $${\parallel}f(x + y) + f(x - y) -2f(x) - 2f(y){\parallel}_{L^{\infty}(\mathbb{R}^n)}\leq\varepsilon$$ $${\parallel}f(x + y) + g(x - y) -2h(x) - 2f(y){\parallel}_{L^{\infty}(\mathbb{R}^n)}\leq\varepsilon$$ based on the concept of linear functionals on the space of smooth functions with compact support.

WEAK COMPACTNESS AND EXTREMAL STRUCTURE IN LP(μ, X)

  • Park, Chun-Kee
    • Korean Journal of Mathematics
    • /
    • v.7 no.1
    • /
    • pp.123-130
    • /
    • 1999
  • We characterize the compactness, weak precompactness and weak compactness in $L^P({\mu},X)$ and in more general space $P^c({\mu},X)$. Moreover, we present this characterization in terms of extremal structure in X.

  • PDF

THE MAXIMAL OPERATOR OF BOCHNER-RIESZ MEANS FOR RADIAL FUNCTIONS

  • Hong. Sung-Geum
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.93-100
    • /
    • 2001
  • Author proves weak type estimates of the maximal function associated with the Bochner-Riesz means while it is claimed p=2n/(n+1+$2\delta) and 0<\delta\leq(n-1)/2$ that the maximal function is bounded on L^p-{rad}$.

  • PDF

A UNIFORM LAW OF LARGE MUNBERS FOR PRODUCT RANDOM MEASURES

  • Kil, Byung-Mun;Kwon, Joong-Sung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.221-231
    • /
    • 1995
  • Let $Z_1, Z_2, \ldots, Z_l$ be random set functions or intergrals. Then it is possible to discuss their products. In the case of random integrals, $Z_i$ is a random set function indexed y a family, $G_i$ say, of real valued functions g on $S_i$ for which the integrals $Z_i(g) = \smallint gdZ_i$ are well defined. If $g_i = \in g_i (i = 1, 2, \ldots, l) and g_1 \otimes \cdots \otimes g_l$ denotes the tensor product $g(s) = g_1(s_1)g_2(s_2) \cdots g_l(s_l) for s = (s_1, s_2, \ldots, s_l) and s_i \in S_i$, then we can defined $Z(g) = (Z_1 \times Z_2 \times \cdots \times Z_l)(g) = Z_1(g_1)Z_2(g_2) \cdots Z_l(g_l)$.

  • PDF

Full waveform inversion by objective functions with power and integral (지수 및 적분을 포함한 목적함수에 의한 파형역산)

  • Ha, Wan-Soo;Pyun, Suk-Joon;Shin, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.130-134
    • /
    • 2007
  • Classical full waveform inversion for velocity estimation defines the objective function as the $l^2$ -norm of differences between the modeled and the observed wavefields. Although widely used, the results of this method have been less than satisfactory. A moderate improvement of this method is to define the objective function as the $l^2$ -norm of differences between the logarithms of the modeled and observed wavefields. In this paper we propose new objective functions of waveform inversion. They produce better results in sub-salt imaging than those of the classical and the logarithmic objective functions. One objective function defines the residual as the difference between $L^{th}$ power of the modeled wavefields and that of the observed wavefields. Another defines the residual as the difference between the integral of the $L^{th}$ power of the modeled wavefields and that of the observed wavefields. We apply these new objective functions to the synthetic SEG/EAGE salt model, and show that our new waveform inversion algorithms provide more accurate results than those of the classical and logarithmic waveform inversion methods.

  • PDF

On Approximation of Functions Belonging to Lip(α, r) Class and to Weighted W(Lr,ξ(t)) Class by Product Mean

  • Nigam, Hare Krishna;Sharm, Ajay
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.4
    • /
    • pp.545-556
    • /
    • 2010
  • A good amount of work has been done on degree of approximation of functions belonging to Lip${\alpha}$, Lip($\xi$(t),r) and W($L_r,\xi(t)$) and classes using Ces$\`{a}$ro, N$\"{o}$rlund and generalised N$\"{o}$rlund single summability methods by a number of researchers ([1], [10], [8], [6], [7], [2], [3], [4], [9]). But till now, nothing seems to have been done so far to obtain the degree of approximation of functions using (N,$p_n$)(C, 1) product summability method. Therefore the purpose of present paper is to establish two quite new theorems on degree of approximation of function $f\;\in\;Lip({\alpha},r)$ class and $f\;\in\;W(L_r,\;\xi(t))$ class by (N, $p_n$)(C, 1) product summability means of its Fourier series.

LITTLE HANKEL OPERATORS ON WEIGHTED BLOCH SPACES IN Cn

  • Choi, Ki-Seong
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.469-479
    • /
    • 2003
  • Let B be the open unit ball in $C^{n}$ and ${\mu}_{q}$(q > -1) the Lebesgue measure such that ${\mu}_{q}$(B) = 1. Let ${L_{a,q}}^2$ be the subspace of ${L^2(B,D{\mu}_q)$ consisting of analytic functions, and let $\overline{{L_{a,q}}^2}$ be the subspace of ${L^2(B,D{\mu}_q)$) consisting of conjugate analytic functions. Let $\bar{P}$ be the orthogonal projection from ${L^2(B,D{\mu}_q)$ into $\overline{{L_{a,q}}^2}$. The little Hankel operator ${h_{\varphi}}^{q}\;:\;{L_{a,q}}^2\;{\rightarrow}\;{\overline}{{L_{a,q}}^2}$ is defined by ${h_{\varphi}}^{q}(\cdot)\;=\;{\bar{P}}({\varphi}{\cdot})$. In this paper, we will find the necessary and sufficient condition that the little Hankel operator ${h_{\varphi}}^{q}$ is bounded(or compact).

CENTROIDS AND SOME CHARACTERIZATIONS OF CATENARIES

  • Kim, Dong-Soo;Moon, Hyung Tae;Yoon, Dae Won
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.709-714
    • /
    • 2017
  • For every interval [a, b], we denote by (${\bar{x}}_A,{\bar{y}}_A$) and (${\bar{x}}_L,{\bar{y}}_L$) the geometric centroid of the area under a catenary y = k cosh((x - c)/k) defined on this interval and the centroid of the curve itself, respectively. Then, it is well-known that ${\bar{x}}_L={\bar{x}}_A$ and ${\bar{y}}_L=2{\bar{y}}_A$. In this paper, we show that one of ${\bar{x}}_L={\bar{x}}_A$ and ${\bar{y}}_L=2{\bar{y}}_A$ characterizes the family of catenaries among nonconstant $C^2$ functions. Furthermore, we show that among nonconstant and nonlinear $C^2$ functions, ${\bar{y}}_L/{\bar{x}}_L=2{\bar{y}}_A/{\bar{x}}_A$ is also a characteristic property of catenaries.