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CENTROIDS AND SOME CHARACTERIZATIONS

OF CATENARIES

Dong-Soo Kim, Hyung Tae Moon, and Dae Won Yoon

Abstract. For every interval [a, b], we denote by (x̄A, ȳA) and (x̄L, ȳL)
the geometric centroid of the area under a catenary y = k cosh((x− c)/k)
defined on this interval and the centroid of the curve itself, respectively.
Then, it is well-known that x̄L = x̄A and ȳL = 2ȳA.

In this paper, we show that one of x̄L = x̄A and ȳL = 2ȳA charac-
terizes the family of catenaries among nonconstant C2 functions. Fur-
thermore, we show that among nonconstant and nonlinear C2 functions,
ȳL/x̄L = 2ȳA/x̄A is also a characteristic property of catenaries.

1. Introduction

A well-known property of the catenary y = k cosh((x−c)/k), k > 0 is that the
ratio of the area under the curve to the arc length of the curve is independent
of the interval over which these quantities are concurrently measured. For a
positive C1 function y(x) defined on an interval I and an interval [a, b] ⊂ I,
we consider the area A(a, b) over the interval [a, b] and the arc length L(a, b)
of the graph of y(x). Then, the catenary y = k cosh((x − c)/k), k > 0 satisfies
for every interval [a, b] ⊂ I, A(a, b) = kL(a, b). This property characterizes
the family of catenaries y = k cosh((x− c)/k) among nonconstant C2 functions
([11]). Thus, we have the following.

Proposition 1.1. For a nonconstant positive C2 function y(x) defined on an

interval I, the followings are equivalent.

(1) There exists a positive constant k such that for every interval [a, b] ⊂ I,

A(a, b) = kL(a, b).

(2) The function y(x) satisfies y(x) = k
√

1 + y′(x)2, where k is a positive

constant.
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(3) For some k > 0 and c ∈ R,

y(x) = k cosh

(

x− c

k

)

.

Two higher dimensional generalizations of Proposition 1.1 were established
in [1]. For a positive C1 function y(x) defined on an interval I and an in-
terval [a, b] ⊂ I, we denote by (x̄A, ȳA) = (x̄A(a, b), ȳA(a, b)) and (x̄L, ȳL) =
(x̄L(a, b), ȳL(a, b)) the geometric centroid of the area under the graph of y(x)
defined on this interval and the centroid of the graph itself, respectively. Then,
for a catenary we have the following ([11]).

Proposition 1.2. A catenary y = k cosh((x − c)/k) satisfies the following.

(1) For every interval [a, b] ⊂ I, x̄L(a, b) = x̄A(a, b).
(2) For every interval [a, b] ⊂ I, ȳL(a, b) = 2ȳA(a, b).

In this paper, first of all, in Section 2 we establish the following characteri-
zation theorem for catenaries.

Theorem 1.3. For a nonconstant positive C2 function y(x) defined on an

interval I, the followings are equivalent.

(1) For every interval [a, b] ⊂ I, x̄L(a, b) = x̄A(a, b).
(2) For every interval [a, b] ⊂ I, ȳL(a, b) = 2ȳA(a, b).
(3) For some k > 0 and c ∈ R,

y(x) = k cosh

(

x− c

k

)

.

In Section 3, we prove the following characterization theorem for catenaries.

Theorem 1.4. For a nonconstant and nonlinear positive C2 function y(x)
defined on an interval I, the followings are equivalent.

(1) For every interval [a, b] ⊂ I,

ȳL

x̄L

= 2
ȳA

x̄A

.

(2) For some k > 0 and c ∈ R,

y(x) = k cosh

(

x− c

k

)

.

In order to find the centroid of polygons, see [3]. For the perimeter centroid
of a polygon, we refer to [2]. In [9], mathematical definitions of centroid of pla-
nar bounded domains were given. For various centroids of higher dimensional
simplexes, see [10]. The relationships between various centroids of a quadrangle
were given in [5, 8]

Archimedes proved the area properties of parabolic sections and then for-
mulated the centroid of parabolic sections ([12]). Some characterizations of
parabolas using these properties were given in [4, 6, 7].
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2. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 stated in Section 1.
Suppose that a nonconstant positive C2 function y(x) defined on an interval

I satisfies x̄L(a, b) = x̄A(a, b). Then for all a, b ∈ I with a < b, we have

(2.1)

∫ b

a

y(x)dx

∫ b

a

xw(x)dx =

∫ b

a

w(x)dx

∫ b

a

xy(x)dx,

where w(x) is a function defined by w(x) =
√

1 + y′(x)2. Note that (2.1) is
valid for all a, b ∈ I.

By differentiating (2.1) with respect to the variable b, the fundamental the-
orem of calculus gives
(2.2)

y(b)

∫

b

a

xw(x)dx + bw(b)

∫

b

a

y(x)dx = w(b)

∫

b

a

xy(x)dx + by(b)

∫

b

a

w(x)dx.

With respect to a, we differentiate (2.2) to have

(2.3) y(b)aw(a) + bw(b)y(a) = w(b)ay(a) + by(b)w(a),

which shows that for all a, b ∈ I

(2.4) (b − a){y(b)w(a)− y(a)w(b)} = 0.

It follows from (2.4) that on the interval I, y(x)/w(x) is a constant k. That is,

the function y(x) satisfies y(x) = k
√

1 + y′(x)2. Hence, Proposition 1.1 implies
that (1) ⇒ (3).

Now, suppose that a nonconstant positive C2 function y(x) defined on an
interval I satisfies ȳL(a, b) = ȳA(a, b). Then for all a, b ∈ I with a < b, we have

(2.5)

∫ b

a

y(x)dx

∫ b

a

y(x)w(x)dx =

∫ b

a

w(x)dx

∫ b

a

y(x)2dx,

where w(x) =
√

1 + y′(x)2. Note that (2.5) is valid for all a, b ∈ I.
Differentiating (2.5) with respect to b gives

(2.6)

y(b)

∫

b

a

y(x)w(x)dx + y(b)w(b)

∫

b

a

y(x)dx

= w(b)

∫

b

a

y(x)2dx+ y(b)2
∫

b

a

w(x)dx.

We differentiate (2.6) with respect to a. Then we have

(2.7) y(b)y(a)w(a) + y(b)w(b)y(a) = w(b)y(a)2 + y(b)2w(a),

from which for all a, b ∈ I we get

(2.8) {y(b)− y(a)}{y(b)w(a)− y(a)w(b)} = 0.

We fix a point a0 ∈ I. Then we have from (2.8)

(2.9) {y(b)− y(a0)}{y(b)w(a0)− y(a0)w(b)} = 0.
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Let us denote by J the open set given by

J = {b ∈ I | y(b)w(a0)− y(a0)w(b) 6= 0}.

We divide by two cases as follows.

Case 1. J = φ. In this case, from the definition of the open set J we get

(2.10)
y(b)

w(b)
=

y(a0)

w(a0)
(= k).

Hence, the function y(x) satisfies y(x) = k
√

1 + y′(x)2. Thus, Proposition 1.1
implies that the function y(x) is a catenary.

Case 2. J 6= φ. In this case, it follows from (2.9) that for all x ∈ J , y(x) =
y(a0). We let k = y(a0) and fix a point x0 ∈ J . We denote by K = (x1, x2)
the maximal open interval containing x0 such that y(x) = k. If the maximal
interval K satisfies K = I, then the function y(x) is a constant function. This
contradiction shows that K 6= I, and hence one of x1 and x2 belongs to I.
Thus we may assume that x2 ∈ I. For a sufficiently small ǫ > 0, the interval
(x2, x2 + ǫ) does not intersect J . Hence, it follows from (2.8) with a = x2 that
for all b ∈ (x2, x2 + ǫ)

(2.11)
y(b)

w(b)
=

y(x2)

w(x2)
(= k),

where we use y(x2) = k, y′(x2) = 0 and w(x2) = 1. Hence, on the interval

(x2, x2 + ǫ) the function y(x) satisfies y(x) = k
√

1 + y′(x)2. Together with
(2.11) and Proposition 1.1, the maximality of K shows that

(2.12) y(x) =

{

k, if x ∈ (x1, x2],

k cosh
(

x−x2

k

)

, if x ∈ (x2, x2 + ǫ).

This yields that the function y(x) cannot be C2, a contradiction.
Summarizing the above cases, we see that (2) ⇒ (3).
Conversely, it follows from Proposition 1.2 that (3) ⇒ (1) and (2). This

completes the proof of Theorem 1.3.

3. Proof of Theorem 1.4

In this section, we prove Theorem 1.4 stated in Section 1.
Suppose that a nonconstant positive C2 function y(x) defined on an interval

I satisfies ȳL/x̄L = 2ȳA/x̄A. Then for all a, b ∈ I with a < b, we have

(3.1)

∫

b

a

xy(x)dx

∫

b

a

y(x)w(x)dx =

∫

b

a

xw(x)dx

∫

b

a

y(x)2dx,

where w(x) =
√

1 + y′(x)2. Note that (2.1) is valid for all a, b ∈ I.
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By differentiating (3.1) with respect to b, we obtain

(3.2)

by(b)

∫ b

a

y(x)w(x)dx + y(b)w(b)

∫ b

a

xy(x)dx

= bw(b)

∫

b

a

y(x)2dx + y(b)2
∫

b

a

xw(x)dx.

We differentiate (3.2) with respect to a. Then we have

(3.3) by(b)y(a)w(a) + y(b)w(b)ay(a) = bw(b)y(a)2 + y(b)2aw(a),

which shows that for all a, b ∈ I

(3.4) {by(a)− ay(b)}{y(b)w(a)− y(a)w(b)} = 0.

We fix a nonzero a0 ∈ I. Then we get from (3.4)

(3.5) {by(a0)− a0y(b)}{y(b)w(a0)− y(a0)w(b)} = 0.

Putting J = {b ∈ I | y(b)w(a0) − y(a0)w(b) 6= 0}, we divide by three cases as
follows.

Case 1. J = φ. In this case, from the definition of the open set J we get

(3.6)
y(b)

w(b)
=

y(a0)

w(a0)
(= k).

Hence, the function y(x) satisfies y(x) = k
√

1 + y′(x)2. Thus, Proposition 1.1
implies that the function y(x) is a catenary.

Case 2. J = I. In this case, from (3.5) we get

(3.7) y(x) = kx, k =
y(a0)

a0
,

which leads a contradiction.

Case 3. J 6= φ and J 6= I. In this case, it follows from (3.5) that for all
x ∈ J , y(x) = kx, where k = y(a0)/a0. We fix a point x0 ∈ J and denote by
K = (x1, x2) the maximal open interval containing x0 such that y(x) = kx.
If the maximal interval K satisfies K = I, then the function y(x) is a linear
function. This contradiction yields K 6= I, and hence one of x1 and x2 belongs
to I. Thus we may assume that x2 ∈ I. For a sufficiently small ǫ > 0, the
interval (x2, x2 + ǫ) does not intersect J . Hence, it follows from (3.4) with
a = x2 that for all b ∈ (x2, x2 + ǫ)

(3.8)
y(b)

w(b)
=

y(x2)

w(x2)
(= l) , l =

kx2
√
1 + k2

,

where we use y(x2) = kx2, y
′(x2) = k and w(x2) =

√
1 + k2. Hence, on the

interval (x2, x2 + ǫ) the function y(x) satisfies y(x) = l
√

1 + y′(x)2. Therefore,
Proposition 1.1 shows that

(3.9) y(x) =

{

kx, if x ∈ (x1, x2],

l or l cosh
(

x−x2

l

)

, if x ∈ (x2, x2 + ǫ),
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which cannot be a C2 function.
Due to the above three cases, we see that (1) ⇒ (2).
Conversely, it follows from Proposition 1.2 that (2) ⇒ (1). This completes

the proof of Theorem 1.4.
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