• Title/Summary/Keyword: Krull rings

Search Result 23, Processing Time 0.016 seconds

Where Some Inert Minimal Ring Extensions of a Commutative Ring Come from

  • Dobbs, David Earl
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.53-69
    • /
    • 2020
  • Let (A, M) ⊂ (B, N) be commutative quasi-local rings. We consider the property that there exists a ring D such that A ⊆ D ⊂ B and the extension D ⊂ B is inert. Examples show that the number of such D may be any non-negative integer or infinite. The existence of such D does not imply M ⊆ N. Suppose henceforth that M ⊆ N. If the field extension A/M ⊆ B/N is algebraic, the existence of such D does not imply that B is integral over A (except when B has Krull dimension 0). If A/M ⊆ B/N is a minimal field extension, there exists a unique such D, necessarily given by D = A + N (but it need not be the case that N = MB). The converse fails, even if M = N and B/M is a finite field.

THE DIMENSION GRAPH FOR MODULES OVER COMMUTATIVE RINGS

  • Shiroyeh Payrovi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.733-740
    • /
    • 2023
  • Let R be a commutative ring and M be an R-module. The dimension graph of M, denoted by DG(M), is a simple undirected graph whose vertex set is Z(M) ⧵ Ann(M) and two distinct vertices x and y are adjacent if and only if dim M/(x, y)M = min{dim M/xM, dim M/yM}. It is shown that DG(M) is a disconnected graph if and only if (i) Ass(M) = {𝖕, 𝖖}, Z(M) = 𝖕 ∪ 𝖖 and Ann(M) = 𝖕 ∩ 𝖖. (ii) dim M = dim R/𝖕 = dim R/𝖖. (iii) dim M/xM = dim M for all x ∈ Z(M) ⧵ Ann(M). Furthermore, it is shown that diam(DG(M)) ≤ 2 and gr(DG(M)) = 3, whenever M is Noetherian with |Z(M) ⧵ Ann(M)| ≥ 3 and DG(M) is a connected graph.

TWO GENERALIZATIONS OF LCM-STABLE EXTENSIONS

  • Chang, Gyu Whan;Kim, Hwankoo;Lim, Jung Wook
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.393-410
    • /
    • 2013
  • Let $R{\subseteq}T$ be an extension of integral domains, X be an indeterminate over T, and R[X] and T[X] be polynomial rings. Then $R{\subseteq}T$ is said to be LCM-stable if $(aR{\cap}bR)T=aT{\cap}bT$ for all $0{\neq}a,b{\in}R$. Let $w_A$ be the so-called $w$-operation on an integral domain A. In this paper, we introduce the notions of $w(e)$- and $w$-LCM-stable extensions: (i) $R{\subseteq}T$ is $w(e)$-LCM-stable if $((aR{\cap}bR)T)_{w_T}=aT{\cap}bT$ for all $0{\neq}a,b{\in}R$ and (ii) $R{\subseteq}T$ is $w$-LCM-stable if $((aR{\cap}bR)T)_{w_R}=(aT{\cap}bT)_{w_R}$ for all $0{\neq}a,b{\in}R$. We prove that LCM-stable extensions are both $w(e)$-LCM-stable and $w$-LCM-stable. We also generalize some results on LCM-stable extensions. Among other things, we show that if R is a Krull domain (resp., $P{\upsilon}MD$), then $R{\subseteq}T$ is $w(e)$-LCM-stable (resp., $w$-LCM-stable) if and only if $R[X]{\subseteq}T[X]$ is $w(e)$-LCM-stable (resp., $w$-LCM-stable).