• Title/Summary/Keyword: Krawtchouk polynomial

Search Result 4, Processing Time 0.016 seconds

EXPLICIT EXPRESSION OF THE KRAWTCHOUK POLYNOMIAL VIA A DISCRETE GREEN'S FUNCTION

  • Kim, Gil Chun;Lee, Yoonjin
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.509-527
    • /
    • 2013
  • A Krawtchouk polynomial is introduced as the classical Mac-Williams identity, which can be expressed in weight-enumerator-free form of a linear code and its dual code over a Hamming scheme. In this paper we find a new explicit expression for the $p$-number and the $q$-number, which are more generalized notions of the Krawtchouk polynomial in the P-polynomial schemes by using an extended version of a discrete Green's function. As corollaries, we obtain a new expression of the Krawtchouk polynomial over the Hamming scheme and the Eberlein polynomial over the Johnson scheme. Furthermore, we find another version of the MacWilliams identity over a Hamming scheme.

LEONARD PAIRS OF RACAH AND KRAWTCHOUK TYPE IN LB-TD FORM

  • Alnajjar, Hasan
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.401-414
    • /
    • 2019
  • Let ${\mathcal{F}}$ denote an algebraically closed field with characteristic not two. Fix an integer $d{\geq}3$, let $Mat_{d+1}({\mathcal{F}})$ denote the ${\mathcal{F}}$-algebra of $(d+1){\times}(d+1)$ matrices with entries in ${\mathcal{F}}$. An ordered pair of matrices A, $A^*$ in $Mat_{d+1}({\mathcal{F}})$ is said to be LB-TD form whenever A is lower bidiagonal with subdiagonal entries all 1 and $A^*$ is irreducible tridiagonal. Let A, $A^*$ be a Leonard pair in $Mat_{d+1}({\mathcal{F}})$ with fundamental parameter ${\beta}=2$, with this assumption there are four families of Leonard pairs, Racah, Hahn, dual Hahn, Krawtchouk type. In this paper we show from these four families only Racah and Krawtchouk have LB-TD form.

Krawtchouk Polynomial Approximation for Binomial Convolutions

  • Ha, Hyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.493-502
    • /
    • 2017
  • We propose an accurate approximation method via discrete Krawtchouk orthogonal polynomials to the distribution of a sum of independent but non-identically distributed binomial random variables. This approximation is a weighted binomial distribution with no need for continuity correction unlike commonly used density approximation methods such as saddlepoint, Gram-Charlier A type(GC), and Gaussian approximation methods. The accuracy obtained from the proposed approximation is compared with saddlepoint approximations applied by Eisinga et al. [4], which are the most accurate method among higher order asymptotic approximation methods. The numerical results show that the proposed approximation in general provide more accurate estimates over the entire range for the target probability mass function including the right-tail probabilities. In addition, the method is mathematically tractable and computationally easy to program.