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EXPLICIT EXPRESSION OF THE KRAWTCHOUK

POLYNOMIAL VIA A DISCRETE GREEN’S FUNCTION

Gil Chun Kim and Yoonjin Lee

Abstract. A Krawtchouk polynomial is introduced as the classical Mac-
Williams identity, which can be expressed in weight-enumerator-free form
of a linear code and its dual code over a Hamming scheme. In this
paper we find a new explicit expression for the p-number and the q-
number, which are more generalized notions of the Krawtchouk poly-
nomial in the P -polynomial schemes by using an extended version of a
discrete Green’s function. As corollaries, we obtain a new expression of
the Krawtchouk polynomial over the Hamming scheme and the Eber-

lein polynomial over the Johnson scheme. Furthermore, we find another
version of the MacWilliams identity over a Hamming scheme.

1. Introduction

Let C be a linear code over a finite field Fq with q elements of length d. The
MacWilliams identity for linear codes over Fq is one of the most important
identities in coding theory, which expresses the Hamming weight enumerator
of the dual code C⊥ of a linear code C over Fq in terms of the Hamming weight
enumerator of C. Let a = (a0, a1, . . . , ad) (respectively, b = (b0, b1, . . . , bd)) be
the weight distributions of C (respectively, C⊥). Then MacWilliams identity
can be expressed in weight-enumerator-free form as [5, 8, 9]:

a =
1

|C⊥|
b (pj(i)),

where pj(i) = pj(i; d, q) is the Krawtchouk polynomial defined by

pj(i) =

j
∑

l=0

(−1)l(q − 1)j−l

(
i

l

)(
d− i

j − l

)

(i, j = 0, 1, . . . , d).
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Delsarte introduced the association scheme in [5]. Association schemes are
important notions in algebraic graph theory and in coding theory. The classes
of strongly regular graphs, distance regular graphs and symmetric circulants
are instances of association schemes. In particular, the Hamming scheme and
the Johnson scheme are the most important association schemes [1, 5, 6]. The
Hamming scheme is mainly concerned with the distance of a code. In other
words, the linear programming method produces upper bounds for the size of
a code with given minimum distance, and lower bounds for the size of a design
with given strength.

More generalized notions of the Krawtchouk polynomial in association sche-
mes are the p-number and the q-number of the association schemes. One of the
most important association schemes is a P -polynomial scheme [5, 6, 8]. In fact,
the Hamming scheme and the Johnson scheme are the P -polynomial schemes,
and the p-number and the q-number in the P -polynomial schemes are applied
to finding some universal bounds for codes and designs [5, 6, 8].

A Green’s function is introduced in a famous essay by George Green in
1728. In [4], a discrete Green’s function is defined on graphs. The Green
function is closely associated with the normalized Laplacian Lβ and is useful
for solving discrete Laplace equations with boundary conditions. In [2, 3],
F. Chung introduced the relationship between the PageRank and a discrete
Green’s function Gβ with a positive real number β. A Green’s function Gβ

can be explained with an inverse relation of the β-normalized Laplacian Lβ

represented by an adjacency matrix.
In this paper we find a new explicit expression (Theorem 4) for the p-number

and the q-number by using an extended version of a discrete Green’s function,
called a normalized Green’s function Gβ,N ; this is expressed by a basis of a
nullspace of some d × (d + 1) matrix Lsub (associated with the P -polynomial
scheme and Gβ,N ) and the adjacency matrices of the P -polynomial scheme
for β ∈ R. As corollaries, we obtain a new expression of the Krawtchouk
polynomial over the Hamming scheme and the Eberlein polynomial over the
Johnson scheme. Furthermore, we find another version of the MacWilliams
identity over a Hamming scheme (Corollary 5.6), and we also obtain another
expression of the Eberlein polynomial Ei(j) as p-number over the Johnson
scheme J(v, d) (Corollary 6.2).

In more detail, for some βj ∈ R, we show that the j-th column vector of

the second eigenmatrix Q = (qj(i)) is the vector (u
(j)
0 , u

(j)
1 , . . . , u

(j)
d ) which

is contained in a nullspace of some d× (d+ 1) matrix L
(βj)
sub (Proposition 4.3).

Furthermore, we obtain the p-number by using u
(j)
i and the relations with the q-

number over the association schemes (Corollary 4.4). As a main result, we show
that the p-number pj(i) and the q-number qj(i) can be explicitly expressed by a

determinant of a submatrix L
(βj)
i of d× (d+1) matrix L

(βj)
sub with βj =

p1(j)
k1

−1

(j = 0, 1, . . . , d, k1 is a valency of R1) (Theorem 4.1). In Corollary 5.1, we show
that the Krawtchouk polynomial pj(i) over the Hamming scheme H(d, q) can
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be explicitly expressed by a determinant of a submatrix L
(βj)
i of d × (d + 1)

matrix L
(βj)
sub with βj = − qj

k1
(j = 0, 1, . . . , d) and k1 = d(q − 1).

This paper is organized as follows. In Section 2, we introduce basic facts of
the P -polynomial scheme and a Green’s function Gβ . In Section 3, we intro-
duce a d × (d + 1) matrix Lsub, and we define a normalized Green’s function
Gβ,N . In Section 4, for βj ∈ R, we find the relationship between a normalized
Green’s function Gβj ,N and the p-number pj(i) (or the q-number qj(i)). More-

over, we obtain the relationship between determinants of submatrices L
(βj)
i of

L
(βj)
sub and the p-number (or the q-number). In Section 5, we obtain the relation-

ship between determinants of submatrices L
(βj)
i of L

(βj)
sub and the Krawtchouk

polynomial pj(i). We thus obtain another version of the MacWilliams identity
over H(d, q). Finally, in Section 6, we obtain the Eberlein polynomial Ei(j)
as the p-number over the Johnson scheme J(v, d) using the determinants of

submatrices L
(βj)
i of L

(βj)
sub .

2. Preliminaries

In this section we introduce basic facts on association schemes and the dis-
crete Green’s function.

Let X = (X, {Ri}) (i = 0, 1, . . . , d) be an association scheme and dM (x, y)
be a metric over X . We describe the relations by their adjacency matrices Ai

(i = 0, 1, . . . , d) which are the |X | × |X | matrices defined by

(Ai)x,y =

{
1, if dM (x, y) = i,
0, otherwise.

A Bose Mesner algebra A is generated by the adjacency matrices Ai, that is,
A = {

∑
tiAi | t0, t1, . . . , td ∈ C}. A Bose-Mesner algebra A has a unique basis

of primitive idempotent matrices E0, E1, . . . , Ed, that is,

(1) EkEl = δklEk (k, l = 0, 1, . . . , d), (2)

d∑

i=0

Ei = I,

where δkl is the Kronecker delta function. A Bose-Mesner algebra A have two
basis {Ai} and {Ei}. For Ai and Ei, we express one in terms of the other and
we obtain

Aj =

d∑

i=0

pj(i)Ei, Ej =
1

|X |

d∑

i=0

qj(i)Ai

for j = 0, 1, . . . , d. The (d+ 1)× (d+ 1) matrix P = (pj(i)) (respectively, Q =
(qj(i))) is called the first eigenmatrix (respectively, the second eigenmatrix )
of the association scheme. Then P = (pj(i)) and Q = (qj(i)) satisfy that

qj(i)/mj = pi(j)/ki, where mj = rank(Ej), ki is the valency of Ai, and pi(j)
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is the complex conjugate of pi(j). The adjacency matrices Ai satisfy

AiAj =

d∑

k=0

pkijAk

for all i, j, where for (x, y) ∈ Rk, p
k
ij is the number of z ∈ X such that (x, z) ∈

Ri and (z, y) ∈ Rj . The non-negative integers pkij are called the intersection

numbers of X. Let Bi be a matrix with (j, k)-entries pkij , and let B be an algebra
spanned by B0, B1, . . . , Bd. Then Bi is called the i-th intersection matrix of X
and B is called the intersection algebra of X. In fact, the Bose-Mesner algebra
A of X is isomorphic to B by the map Ai → Bi. In particular, Ai and Bi have
the same minimal polynomials.

Now, we introduce definitions of the P -polynomial schemes and basic facts
on the P -polynomial schemes [1, 5, 6].

Definition. A symmetric association scheme X = (X, {Ri}) (i = 0, . . . , d)
is called a P -polynomial scheme with respect to the ordering R0, R1, . . . , Rd,
if there exists some complex coefficient polynomial υi(x) of degree i (i =
0, 1, . . . , d) such that Ai = υi(A1), where Ai is the adjacency matrix with
respect to Ri.

Let X = (X, {Ri}) (i = 0, 1, . . . , d) be a symmetric association scheme, and
Γ1 be the graph whose vertex and edge sets are X and R1 respectively. Then
the following (1), (2), (3) and (4) are equivalent to each other.

(1) Γ1 is a distance regular graph.
(2) The first intersection matrix B1 is a tridiagonal matrix with non-zero

off-diagonal entries,

B1 =












0 k1 0 0 · · · 0
1 a1 b1 0 · · · 0
0 c2 a2 b2 · · · 0
...

...
. . .

. . .
. . .

...
cd−1 ad−1 bd−1

0 · · · · · · 0 cd ad












(bi 6= 0, ci 6= 0),

(i) ai + bi + ci = k1 (i = 0, 1, . . . , d), c0 = bd = 0,

(ii) ki =
k1b1b2 · · · bi−1

c2c3 · · · ci
(i = 2, 3, . . . , d),

(iii) k1 ≥ b1 ≥ · · · ≥ bd−1,

(iv) 1 ≤ c2 ≤ · · · ≤ cd.

(3) X is a P -polynomial scheme with respect to R0, R1, . . . , Rd, that is,
Ai = υi(A1) (i = 0, 1, . . . , d) for some polynomial υi(x) of degree i.

(4) First eigenmatrix P = (pj(i)) satisfies pj(i) = υi(θj) for some polyno-
mial υi(x) of degree i, where θj = p1(j) (i, j = 0, 1, . . . , d).
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Let X = (X, {Ri}) (i = 0, 1, . . . , d) be a P -polynomial scheme. Now, define
a transition probability matrix P over X by

P =
1

k1
A1,

where k1 is the valency of A1. For a function f : X → R, we define a
Laplace operator ∆ by

∆f(x) =
1

k1

∑

(x,y)∈R1

(f(x)− f(y)).

Then, we have ∆ = I−P = I− 1
k1
A1. For all i = 0, 1, . . . , d, a Laplace operator

∆ is symmetric since A1 is symmetric. Then, ∆ is a matrix representation of
L. For j = 0, 1, . . . , d and orthogonal eigenfunctions φ∗

j , we have

L =

d∑

j=0

λjφ
∗
jφj ,

where λj is an eigenvalue of L. Let Lβ be the β-normalized Laplacian by
βI + L. For β > 0, let a discrete Green’s function Gβ denote the symmetric
matrix satisfying LβGβ = I. Then we have

Gβ =

d∑

j=0

1

β + λj

φ∗
jφj .

For β > 0, we have

Gβ(βI + I − P ) = I,

that is,

Gβ = ((β + 1)I − P )−1.

Thus, this implies that

Lβ = (β + 1)I − P = (β + 1)I −
1

k1
A1

= (β + 1)I −
1

k1

d∑

j=0

p1(j)Ej .

Since I = E0 + E1 + · · ·+ Ed, we have

Lβ = (β + 1)(E0 + E1 + · · ·+ Ed)−
1

k1
(p1(0)E0 + p1(1)E1 + · · ·+ p1(d)Ed)

=
d∑

j=0

(

β + 1−
1

k1
p1(j)

)

Ej ,
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where β+1− 1
k1
p1(j) is an eigenvalue of Lβ . Hence, a Green’s function Gβ can

be expressed by

Gβ =

d∑

j=0

(
k1

(β + 1)k1 − p1(j)

)

Ej .

Since Ej = (1/|X |)
∑

qj(i)Ai, the Green function Gβ is a linear combination
of adjacency matrices Ai as follows:

Gβ = r0A0 + r1A1 + · · ·+ rdAd(1)

for some ri (i = 0, 1, . . . , d).
The following notations are used throughout this paper.

• P : the first eigenmatrix of the P -polynomial scheme.
• Q : the second eigenmatrix of the P -polynomial scheme.
• pj(i) : (i, j)-component of P.
• qj(i) : (i, j)-component of Q.
• ki : i-th the valency of the P -polynomial scheme.
• mj : j-th the multiplicity of the P -polynomial scheme.
• N (A) : a nullspace of a matrix A.
• Γ1 : a graph with respect to R1 of a P -polynomial scheme.

3. A reduction matrix Lsub on Lβ of the P -polynomial scheme

In this section we first introduce a d × (d + 1) matrix Lsub obtained from
Lβ . Then we show that Lsub is closely related to the discrete Green’s function
Gβ in the following lemma.

Lemma 3.1. For β > 0, a Green’s function Gβ is expressed as

(2) Gβ = cu0A0 + cu1A1 + · · ·+ cudAd

for some nonzero c ∈ R, where (u0, u1, . . . , ud) is the unique basis of the

nullspace N (Lsub) of Lsub with ud = 1.

Proof. Let X = (X, {Ri}) (i = 0, 1, . . . , d) be a P -polynomial scheme with
respect to a matric dM (x, y) for x, y ∈ X . Let L be a (|X | − 1) × |X | matrix
obtained by the removal of the first row of Lβ = (β+1)I− 1

k1
A1. Then we have

the rank of L is |X | − 1, and the nullity is 1 since Gβ has the inverse matrix.
A basis of the nullspace of L can be induced from rk’s which are coefficients of

Ak in Gβ . Let G
(1)
β be the first column vector of Gβ which is arranged in the

order r0, r1, . . ., rd. Then G
(1)
β is a |X | × 1 matrix, and we have

LG
(1)
β = O(3)

since Gβ is orthogonal. Since the Bose-Mesner algebra A is isomorphic to the

intersection algebra B of X, G−1
β = (β + 1)I − 1

k1
A1 is corresponding with

(β+1)I − 1
k1
B1. Let L

′ be a (d+1)× (d+1) matrix as −k1((β+1)I − 1
k1
B1),
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that is, L′ = B1− k1(β+1)I. Let Lsub be a d× (d+1) matrix obtained by the
removal of the first row of L′. Then, we obtain Lsub as follows:

Lsub =












c1 s1 b1 0 0 · · · 0
0 c2 s2 b2 0 · · · 0
0 0 c3 s3 b3 · · · 0
...

...
...

. . .
. . .

. . .
...

0 0 0 · · · cd−1 sd−1 bd−1

0 0 0 · · · 0 cd sd












,(4)

where si = ai − k1(β + 1) for i = 1, 2, . . . , d and ai, bi, ci are as the entries of
B1 in Section 2. Therefore, by (3), we have

Lsub








r0
r1
...
rd








= O.

Since 1 = c1 ≤ c2 ≤ · · · ≤ cd, rank(Lsub)=d and dimN (Lsub)=1. Then from
Eq. (1), we obtain the result as desired. �

A Green’s function Gβ is defined only for β > 0, and Gβ is expressed as a
linear combination of adjacency matrices Ai such as in Eq.(2). But, for β ≤ 0,
Gβ may be a singular matrix, so there is no Green’s function notion for this
case. We, however, still have rank(Lsub) = d for β ∈ R, so we can obtain
a unique basis (u0, u1, . . . , ud) of N (Lsub) with ud = 1. In this context, we
extend a notion of a Green’s function Gβ associated with any real number β
as follows. The following definition plays an important role for computation of
the p-number and the q-number as we will see in Section 4.

Definition. For β ∈ R, let (u0, u1, . . . , ud) ∈ N (Lsub) with ud = 1 and let
Gβ,N = cu0A0 + cu1A1 + · · · + cudAd, where c is some nonzero ∈ R if β > 0
and c = 1 if β ≤ 0. Then Gβ,N is called the normalized Green’s function.

The P -polynomial schemes are defined by Delsarte. We know the two most
important examples, namely the Hamming scheme H(d, q) and the Johnson
scheme J(v, d). In the following example, we show a normalized Green’s func-
tion over a Hamming scheme H(5, 3).

Example 3.2. Let H(5, 3) be a Hamming scheme over F5
3. Choosing β = − 1

10 ,
we obtain a 5× 6 matrix Lsub as follows:









1 −8 8 0 0 0
0 2 −7 6 0 0
0 0 3 −6 4 0
0 0 0 4 −5 2
0 0 0 0 5 −4









.
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Also, a basis of N (Lsub) is (−
40
3 ,− 26

15 ,−
1
15 ,

1
2 ,

4
5 , 1). Thus we obtain a normal-

ized Green’s function Gβ,N as follows:

Gβ,N = −
40

3
A0 −

26

15
A1 =

1

15
A2 +

1

2
A3 +

4

5
A4 +A5,

where Ai (i = 0, 1, . . . , 5) are the adjacency matrices of H(5, 3).

4. Relation between the p-number (or the q-number) and the
normalized Green’s function

In this section, for β ∈ R, we find the relationship between a normalized
Green’s function Gβ,N and the p-number pj(i) (or the q-number qj(i)) over the
P -polynomial scheme. In fact, the goal of this section is to prove the following
main result, which shows a new expression of the p-number (or the q-number)
over the P -polynomial scheme.

Theorem 4.1. Let X = (X, {Ri}) (i = 0, 1, . . . , d) be a P -polynomial scheme,

and let P = (pj(i)) (respectively, Q = (qj(i))) be the first eigenmatrix (respect-

ively, the second eigenmatrix) of X. Then, for βj =
p1(j)
k1

− 1 (j = 0, 1, . . . , d),
we have

p0(j) = k0, qj(0) = mj ,

pi(j) = (−1)ikic1c2 · · · ci
det(L

(βj)
i )

det(L
(βj)
0 )

(i = 1, 2, . . . , d),

qj(i) = (−1)imjc1c2 · · · ci
det(L

(βj)
i )

det(L
(βj)
0 )

(i = 1, 2, . . . , d),

where mj = rank(Ej) and ki is a valency of Ri.

For the proof of Theorem 4.1, we need Proposition 4.3, Corollary 4.4 and
Lemma 4.5.

We need the following lemma for Proposition 4.3.

Lemma 4.2. Let X = (X, {Ri}) (i = 0, 1, . . . , d) be a P -polynomial scheme

and let Lsub be a matrix of X as in Section 3. Let u = (u0, u1, . . . , ud) be a

(d+ 1)- vector. Then u ∈ N (Lsub) if and only if

u′ := ( u0
︸︷︷︸

, u1, . . . , u1
︸ ︷︷ ︸

, . . . , ud, . . . , ud
︸ ︷︷ ︸

) ∈ N (L),

k0 k1 kd

where L is a (|X | − 1)× |X | matrix on (3) in Section 3.

Proof. (⇒) Let u be a basis of N (Lsub), and let li be the i-th row vector of
Lsub for i = 1, 2, . . . , d. Then li is (0, . . . , 0, i, si, ti, 0, . . . 0). Since u · li = 0,

(ui−1)(ci) + (ui)(si) + (ui+1)(ti) = 0

⇔ −
1

k1
((ui−1)(ci) + (ui)(si) + (ui+1)(ti)) = 0.
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Thus, the row vector of L is orthogonal to u′. That is, u′ ∈ N (L).
(⇐) It is clear by the previous process of obtaining Lsub from L in Section

3. �

For some βj ∈ R, let L
(βj)
sub be a d× (d+1) matrix as Lsub in Section 3, and

let (u
(j)
0 , u

(j)
1 , . . . , u

(j)
d ) be a basis of N (L

(βj)
sub ).

Let X = (X, {Ri}) (i = 0, 1, . . . , d) be a P -polynomial scheme, and let
P = (pj(i)) (respectively, Q = (qj(i))) be the first eigenmatrix (respectively,
the second eigenmatrix) of X. In the following theorem, we show that the j-th

column vector of the second eigenmatrix Q = (qj(i)) belongs to N (L
(βj)
sub ) for

βj = p1(j)
k1

− 1 (j = 0, 1, . . . , d). That is, we find the relationship between

u
(j)
i and component qj(i) of the second eigenmatrix Q = (qj(i)) over the P -

polynomial scheme.

Proposition 4.3. Let X = (X, {Ri}) (i = 0, 1, . . . , d) be a P -polynomial

scheme. For βj = p1(j)
k1

− 1 (j = 0, 1, . . . , d), let Gβj ,N = u
(j)
0 A0 + u

(j)
1 A1 +

. . .+ u
(j)
d Ad be a normalized Green’s function with u

(j)
d = 1. Then qj(i) satisfy

qj(i) = mj
u
(j)
i

u
(j)
0

(i = 0, 1, . . . , d). That is, the j-th column of the second eigen-

matrix Q = (qj(i)) is equal to
mj

u
(j)
0

(u
(j)
0 , u

(j)
1 , . . . , u

(j)
d )T , where mj is the j-th

multiplicity of X.

Proof. Since βjI+L =
∑

((βj+1)− 1
k1
p1(j))Ej=

∑
[((βj+1)k1−p1(j))/k1]Ej ,

((βj +1)k1−p1(j))/k1 are eigenvalues of βjI+L, where βj =
p1(i)
k1

− 1 satisfies

(βj + 1)k1 − p1(j) = 0. So we have (βjI + L)Ej = O. Therefore, every row
vector of L in Section 3 is orthogonal to every column vector of Ej . Since
Ej =

1
|X|

∑
qj(i)Ai, the first column vector of Ej is a component of N (L) and

can be written as

1

|X |
(qj(0), qj(1), . . . , qj(1), qj(2), . . . , qj(2), . . . , qj(d))

T .

Thus, by Lemma 4.2, (qj(0), qj(1), . . . , qj(d)) ∈ N (L
(βj)
sub ). Since dim(N (L

(βj)
sub ))

= 1, for βj =
p1(j)
k1

− 1 (j = 0, 1, . . . , d), the j-th column vectors of the second

eigenmatrix Q = (qj(i)) are equal to qj(d)(u
(j)
0 , u

(j)
1 , . . . , u

(j)
d )T with respect

to a basis (u
(j)
0 , u

(j)
1 , . . . , u

(j)
d ) of N (L

(βj)
sub ) with u

(j)
d = 1. Moreover, we have

qj(i) = qj(d)u
(j)
i . Since qj(0) = mj, we have qj(d) =

mj

u
(j)
0

. �

Corollary 4.4. Let X = (X, {Ri}) (i = 0, 1, . . . , d) be a P -polynomial scheme

and for βj =
p1(j)
k1

−1 (j = 0, 1, . . . , d), let Gβj ,N = u
(j)
0 A0+u

(j)
1 A1+· · ·+u

(j)
d Ad

be a normalized Green’s function. Then pi(j) and u
(j)
i satisfy pi(j) = ki

u
(j)
i

u
(j)
0

.
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Proof. By Proposition 4.3, we know qj(i) = mj
u
(j)
i

u
(j)
0

. Since X is a symmetric

association scheme, we have pi(j) = pi(j). Also, we know the p-number and

the q-number satisfy qj(i)/mj = pi(j)/ki. Thus we have

mj

ki
pi(j) = mj

u
(j)
i

u
(j)
0

⇔ pi(j) = ki
u
(j)
i

u
(j)
0

,

where mj = rank(Ej) and ki is a valency of Ri. �

Let (u0, u1, . . . , ud) be a basis of N (Lsub) with ud = 1. In the following
Lemma, for β ∈ R, we find an explicit expression of ui by a determinant of a
submatrix Li of Lsub as in Section 3. Thus, by Proposition 4.3 and Corollary
4.4, the p-number pj(i) and the q-number qj(i) are expressed by a determinant

of a submatrix of L
(βj)
sub .

Lemma 4.5. For β ∈ R, let L0 be a d× d matrix obtained by the removal of

the first column of Lsub. Let Li be a (d − i) × (d − i) matrix obtained by the

removal from the first row (respectively, column) to the i-th row (respectively,
column) of L0, and let (u0, u1, . . . , ud) be a basis of N (Lsub) with ud = 1. Then

ui = (−1)d−i det(Li)

ci+1ci+2 · · · cd
, i = 0, 1, . . . , d− 1,

where Lsub is defined as in Section 3 and det(Ld) = 1.

Proof. Since Ld−1 is a 1× 1 matrix, thus by (4) in Section 3, we have

det(Ld−1) = sd.

Thus, we have

ud−1 = −
sd
cd

= (−1)d−d+1det(Ld−1)

cd
.

Similarly, we have ud−2 = (−1)d−d+2 det(Ld−2)
cd−1cd

.

Next, we show the following: for i = 3, . . . , d,

ud−i = (−1)i
det(Ld−i)

cd−i+1cd−i+2 · · · cd
.

We consider an i × i submatrix T which is obtained from Lsub by applying
some elementary operations as follows:










A B 0 · · · 0
1 0 0 · · · −ud−i+1

0 1 0 · · · −ud−i+2

...
. . .

...
0 · · · 0 1 −ud−1










,
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where A =
sd−i+1

cd−i+1
and B =

td−i+1

cd−i+1
. Then det(T ) = (−1)i(−ud−i+1)A −

(−1)i+1(−ud−i+2)B, and det(Ld−i) is as follows:

det(Ld−i) = cd−i+1 · · · cd−1cd det(T )

= (−1)i+1cd−i+1 · · · cd−1cd(ud−i+1A+ ud−i+2B)

= (−1)i+1cd−i+1 · · · cd−1cd (−ud−i)

⇔ ud−i = (−1)i
det(Ld−i)

cd−i+1 · · · cd−1cd
.

Therefore, we have

ui = (−1)d−i det(Li)

ci+1ci+2 · · · cd
(i = 0, 1, . . . , d− 1, det(Ld) = 1).

�

For βj =
p1(j)
k1

−1, let Gβ,N = u
(j)
0 A0+u

(j)
1 A1+ · · ·+u

(j)
d Ad be a normalized

Green’s function. Then, by Proposition 4.3, Corollary 4.4 and Lemma 4.5, the
p-number pj(i) and the q-number qj(i) are expressed by a determinant of a

submatrix of L
(βj)
sub . Let L

(βj)
i be a (d − i) × (d − i) submatrix of L

(βj)
sub for

βj = p1(j)
k1

− 1 (j = 0, 1, . . . , d) as Li in Lemma 4.5. Then we obtain Theorem
4.1, the main result of this paper, by Proposition 4.3, Corollary 4.4 and Lemma
4.5.

The proof of Theorem 4.1. By Proposition 4.3 and Corollary 4.4, pi(j) = ki
u
(j)
i

u
(j)
0

and qj(i) = mj
u
(j)
i

u
(j)
0

. Thus we have

p0(j) = k0, qj(0) = mj .

Also, by Lemma 4.5, we have (i = 1, 2, . . . , d)

pi(j) = ki
u
(j)
i

u
(j)
0

= ki
(−1)d−i det(L

(βj)

i )

ci+1ci+2···cd

(−1)d
det(L

(βj)

0 )
c1c2···cd

= (−1)ikic1c2 · · · ci
det(L

(βj)
i )

det(L
(βj)
0 )

,

qj(i) = mj

u
(j)
i

u
(j)
0

= mj

(−1)d−i det(L
(βj)

i
)

ci+1ci+2···cd

(−1)d
det(L

(βj)

0 )

c1c2···cd

= (−1)imjc1c2 · · · ci
det(L

(βj)
i )

det(L
(βj)
0 )

,

where βj =
p1(j)
k1

− 1 (j = 0, 1, . . . , d). �

In [7], we have a method of computation for determinants of tridiagonal

matrices, which we apply here to L
(βj)
i .

Remark 4.6. Since L
(βj)
i is a tridiagonal matrix, the determinant of L

(βj)
i can

be evaluated by multiplication of 2× 2 matrices. Let L
(βj)
i be a (d− i)× (d− i)
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matrix as follows : (i = 0, 1, . . . , d− 2)








si+1 bi+1

ci+2
. . .

. . .

. . .
. . . bd−1

cd sd









,

where sk = ak − k1(βj +1) (k = 1, . . . , d) and ak, bk, ck are as in (4). Thus, the

determinant of L
(βj)
i is

tr
[(

sd −bd−1cd
1 0

)

· · ·

(
si+2 −bi+1ci+2

1 0

)(
si+1 0
1 0

)]

= tr
[ d−i−2∏

l=0

(
sd−l −bd−l−1cd−l

1 0

)

×

(
si+1 0
1 0

)]

= det(L
(βj)
i ).

5. The Krawtchouk polynomial of the Hamming scheme on the
normalized Green’s function

Let H(d, q) be a Hamming scheme over Fd
q . Since the Hamming scheme is a

self-dual scheme, P = (pj(i)) is equal to Q = (qj(i)). The p-number pj(i) of a
Hamming scheme H(d, q) is defined by the Krawtchouk polynomial. Thus, we
have

p1(j) =(−1)0(q − 1)

(
j

0

)(
d− j

1

)

+ (−1)(q − 1)1−1

(
j

1

)(
d− j

1− 1

)

=d(q − 1)− qj.

Also, k1 = d(q − 1). Then βj =
p1(j)
k1

− 1 = d(q−1)−qj−d(q−1)
d(q−1) = − qj

d(q−1) . Thus,

for βj = − qj
d(q−1) , we have a matrix L

(βj)
sub as follows:

L
(βj)
sub =












1 s1 t1 0 0 · · · 0
0 2 s2 t2 0 · · · 0
0 0 3 s3 t3 · · · 0
...

...
...

. . .
. . .

. . . 0
0 0 0 · · · d− 1 sd−1 td−1

0 0 0 · · · 0 d sd












,

where si = i(q− 2)− d(q− 1)(βj +1) for i = 1, 2, . . . , d, and tk = (d− k)(q− 1)
for k = 1, 2, . . . , d− 1.

In the following Corollary 5.1, we show that the Krawtchouk polynomial

pj(i) can be explicitly computed by determinants of submatrices of L
(βj)
sub asso-

ciate with a Green’s function.
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Corollary 5.1. Let H(d, q) be a Hamming scheme over Fd
q. Let L

(βj)
i be a

(d− i)× (d− i) submatrix of L
(βj)
sub for βj = − qj

d(q−1) (j = 0, 1, . . . , d) as Li in

Lemma 4.5. Then, we have

pj(i) = pj(d)u
(j)
i = (−1)d+j−i

(
d

j

)
i! det(L

(βj)
i )

d!

for i, j = 0, 1, . . . , d.

Proof. The Hamming scheme is a self-dual scheme. That is, P = Q (pj(i) =

qj(i)). Thus, by proof of Proposition 4.3, we have pj(i) = pj(d)u
(j)
i . Since

pj(d) = (−1)j
(
d
j

)
and by Lemma 4.5,

pj(i) = (−1)d+j−i

(
d

j

)
i! det(L

(βj)
i )

d!
.

Moreover, by Theorem 4.1 and Corollary 5.1,

det(L
(βj)
0 ) = (−1)d+jd!

kj
(
d
j

) .
�

Example 5.2. Let H(5, 3) be a Hamming scheme over F5
3. Then, the first

eigenmatrix P = (pj(i)) is as follows:










1 10 40 80 80 32
1 7 16 8 −16 −16
1 4 1 −10 −4 8
1 1 −5 −1 8 −4
1 −2 −2 8 −7 2
1 −5 10 −10 5 −1











.

Let j = 1. Then we obtain the p-numbers p1(i) as the entries of the second
column of the first eigenmatrix P.

Let L
(β1)
sub be a 5× 6 matrix over F5

3 for β1 = (3)(1)
5(3−1) = − 3

10 as follows:








1 −6 8 0 0 0
0 2 −5 6 0 0
0 0 3 −4 4 0
0 0 0 4 −3 2
0 0 0 0 5 −2









.

Then, the matrices L
(β1)
0 , L

(β1)
1 , L

(β1)
2 , L

(β1)
3 , and L

(β1)
4 are

L
(β1)
0 =









−6 8 0 0 0
2 −5 6 0 0
0 3 −4 4 0
0 0 4 −3 2
0 0 0 5 −2









, L
(β1)
1 =







−5 6 0 0
3 −4 4 0
0 4 −3 2
0 0 5 −2






,
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L
(β1)
2 =





−4 4 0
4 −3 2
0 5 −2



, L
(β1)
3 =

(
−3 2
5 −2

)

, L
(β1)
4 =

(
−2

)
.

Also, det(L
(β1)
0 ) = 240, det(L

(β1)
1 ) = −168, det(L

(β1)
2 ) = 48, det(L

(β1)
3 ) =

−4, det(L
(β1)
4 ) = −2. Therefore, p1(i) (i = 0, 1, 2, 3, 4, 5) are

p1(0) =(−1)5+1−0

(
5

1

)
0!det(L

(β1)
0 )

5!
=

det(L
(β1)
0 )

24
=

240

24
= 10,

p1(1) =(−1)5+1−1

(
5

1

)
1!det(L

(β1)
1 )

5!
= −

det(L
(β1)
1 )

24
= −

−168

24
= 7,

p1(2) =(−1)5+1−2

(
5

1

)
2!det(L

(β1)
2 )

5!
=

det(L
(β1)
2 )

12
=

48

12
= 4,

p1(3) =(−1)5+1−3

(
5

1

)
3!det(L

(β1)
3 )

5!
= −

det(L
(β1)
3 )

4
= −

−4

4
= 1,

p1(4) =(−1)5+1−4

(
5

1

)
4!det(L

(β1)
4 )

5!
=

det(L
(β1)
4 )

1
=

−2

1
= −2,

p1(5) =(−1)5+1−5

(
5

1

)
5!det(L

(β1)
5 )

5!
= −5,

respectively. Thus, (10, 7, 4, 1,−2,−5)T is the first column vector of the first
eigenmatrix P.

In the following corollary, we explain a result over the Hamming scheme
H(d, q) as Proposition 4.3.

Corollary 5.3. For βj = − qj
d(q−1) (j = 0, 1, . . . , d), let Gβj ,N = u

(j)
0 A0 +

u
(j)
1 A1 + · · · + u

(j)
d Ad be a normalized Green’s function with u

(j)
d = 1. Let

N be a matrix with the j-th column vector as (u
(j)
0 , u

(j)
1 , . . . , u

(j)
d )T for any

j = 0, 1, . . . , d and βj = − qj
d(q−1) . Then u

(j)
i is a (i, j)-component of N and N

is equal to PD, where D is a diagonal matrix with the (j, j)-diagonal entries
(−1)j

(dj)
.

Proof. Since by Proposition 4.3, for βj = − qj
d(q−1) (j = 0, 1, . . . , d), the j-th

column vector of the first eigenmatrix P is equal to pj(d)(u
(j)
0 , u

(j)
1 , . . . , u

(j)
d )T

(u
(j)
d = 1). Therefore,

N










p0(d) 0 0 · · · 0
0 p1(d) 0 · · · 0
0 0 p2(d) · · · 0
...

...
...

. . .
...

0 0 0 · · · pd(d)










= P.
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Since pj(d) =
∑

l(−1)l(q− 1)j−l
(
d
l

)(
0

j−l

)
= (−1)j

(
d
j

)
, we have N = PD, where

D is a diagonal matrix with the (j, j)-diagonal entries (−1)j

(dj)
(j = 0, 1, . . . , d).

�

The following theorem is a matrix version of MacWilliams identity over
H(n, q).

Theorem 5.4. Let C (respectively, C⊥) be a linear code (respectively, a dual

code of a linear code C) over Fq of length d, and let a = (a0, a1, . . . , ad)
(respectively, b = (b0, b1, . . . , bd)) be a weight distribution of C (respectively,
C⊥). Then, a = 1

|C⊥|
b(pj(i)) is expressed by

aD =
1

|C⊥|
bN,

where N is a (d+1)× (d+1) matrix with the j-th column vectors as (u
(j)
0 , . . .,

u
(j)
d )T for βj = − qj

d(q−1) , and D is a (d+1)× (d+1) diagonal matrix with the

(j, j)-diagonal entries (−1)j

(dj)
for j = 0, 1, . . . , d.

Proof. Since a = 1
|C⊥|

bP and by Corollary 5.3, N = PD, so the result follows.

�

Example 5.5. Let P = (pj(i)) be a first eigenmatrix of the Hamming scheme

H(5, 3). Choosing β = − 3j
10 (j = 0, 1, . . . , 5), we have

j a basis of N (L
(βj)
sub ) pj(5)

0 (1, 1, 1, 1, 1, 1) 1
1 (−2,− 7

5 ,−
4
5 ,−

1
5 ,

2
5 1) −5

2 (4, 8
5 ,

1
10 ,−

1
2 ,−

1
5 1) 10

3 (−8,− 4
5 , 1,

1
10 ,−

4
5 , 1) −10

4 (16,− 16
5 ,−

4
5 ,

8
5 ,−

7
5 , 1) 5

5 (−32, 16,−8, 4,−2, 1) −1

Thus, the matrices N and D are as follows:

N =











1 −2 4 −8 16 −32
1 − 7

5
8
5 − 4

5 − 16
5 16

1 − 4
5

1
10 1 − 4

5 −8
1 − 1

5 − 1
2

1
10

8
5 4

1 2
5 − 1

5 − 4
5 − 7

5 −2
1 1 1 1 1 1











, D =











1 0 0 0 0 0
0 1

−5 0 0 0 0

0 0 1
10 0 0 0

0 0 0 1
−10 0 0

0 0 0 0 1
5 0

0 0 0 0 0 −1











.
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Since N = PD, we have ND−1 = P = (pj(i)) as follows:











1 10 40 80 80 32
1 7 16 8 −16 −16
1 4 1 −10 −4 8
1 1 −5 −1 8 −4
1 −2 −2 8 −7 2
1 −5 10 −10 5 −1











.

Corollary 5.6. Let C (respectively, C⊥) be a linear code (respectively, a dual

code of a linear code C) over Fq of length d, and let a = (a0, a1, . . . , ad)
(respectively, b = (b0, b1, . . . , bd)) be a weight distribution of C (respectively,
C⊥). Then we have

d∑

i=0

(

(−1)d−i i! det(L
(βj)
i )

d!

)

bi = (−1)j
|C⊥|
(
d
j

) aj

for βj = − qj
d(q−1) , (i, j = 0, 1, . . . , d), where det(L

(βj)
i ) is given as in Corollary

5.1.

Proof. Since a = 1
|C⊥|b(pj(i)), the result follows immediately from Corollary

5.1. �

6. The Eberlein polynomial of the Johnson scheme on the
normalized Green’s function

In fact, the Eberlein polynomialEi(j) is the p-number of the Johnson scheme
J(v, d). In this section we show that the Eberlein polynomial Ei(j) can be

explicitly computed by determinants of submatrices of L
(βj)
sub associated with a

normalized Green’s function Gβj ,N .
Now, we introduce the Johnson scheme J(v, d) as a P -polynomial scheme.
Johnson scheme. Let S be a set of cardinality v and X = {T ⊂ S : |T | =

d} (d ≤ v/2). Define the distance of T1, T2 ∈ X as d− |T1 ∩ T2| and let Ri be
the i-th distance relation on X , that is,

Ri = {(T1, T2) : |T1 ∩ T2| = d− i}.

Then X = (X, {Ri}) (i = 0, 1, . . . , d) is a symmetric association scheme and is
called the Johnson scheme J(v, d).

The Johnson scheme J(v, d) is a P -polynomial scheme. Thus, the inter-
section matrix B1 of J(v, d) is a tridiagonal matrix with non-zero off-diagonal
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entries as follows:

B1 =













0 k1
c1 a1 b1

c2 a2 b2

c3 a3
. . .

. . .
. . . bd−1

cd ad













,

where, ai = i(v− 2i), bi = (d− i)(v− d− i) and ci = i2 (i = 1, 2, . . . , d). Thus,

for βj =
p1(j)
k1

− 1, we obtain L
(βj)
sub as follows:











c1 a1 − k1(βj + 1) b1
c2 a2 − k1(βj + 1) b2

c3 a3 − k1(βj + 1)
. . .

. . .
. . . bd−1

cd ad − k1(βj + 1)











.

Remark 6.1. Let J(v, d) be a Johnson scheme and let ki andmj be the valencies
and multiplicities of J(v, d). Then

ki =

(
d

i

)(
v − d

i

)

, mj =
v − 2j + 1

v − j + 1

(
v

j

)

.

The following is a corollary to Theorem 4.1, and this shows that the Eberlein
polynomial Ei(j) (that is, the p-number over the Johnson scheme) can be

explicitly computed by determinants of submatrices of L
(βj)
sub associated with a

Green’s function.

Corollary 6.2. Let J(v, d) be a Johnson scheme. For βj = j(j−v−1)
d(v−d) (j =

0, 1, . . . , d), let Gβj ,N = u
(j)
0 A0 + u

(j)
1 A1 + · · ·+ u

(j)
d Ad be a normalized Green’s

function of J(v, d). Then, the Eberlein polynomial Ei(j) (i = 0, 1, . . . , d) is

Ei(j) = pi(j) = ki
u
(j)
i

u
(j)
0

= (−1)i
(
d

i

)(
v − d

i

)

(i!)2
det(L

(βj)
i )

det(L
(βj)
0 )

,

where L
(βj)
i is defined as Li in Lemma 4.5.

Proof. We know that the Eberlein polynomial Ei(j) is

Ei(j) =

i∑

t=0

(−1)i−t

(
d− t

i− t

)(
d− j

t

)(
v − d+ t− j

t

)

.

Thus, we have

E1(j) = −d+ (d− j)(v − d− j + 1).
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Since k1 = d(v − d), we have

βj =
p1(j)

k1
− 1 =

E1(j)− k1
k1

=
j(j − v − 1)

d(v − d)
.

Since ci = i2, by Remark 6.1, the i-th valency ki of Ri (i = 0, 1, . . . , d) is

ki =

(
d

i

)(
v − d

i

)

.

By Theorem 4.1, the Eberlein polynomial Ei(j) is as follows:

Ei(j) = pi(j) = (−1)i
(
d

i

)(
v − d

i

)

(i!)2
det(L

(βj)
i )

det(L
(βj)
0 )

(i = 0, 1, . . . , d).
�

Example 6.3. Let J(8, 4) be a Johnson scheme over F8
2. Then, the order of

the set X is 70. Let L
(β2)
sub be a 4× 5 matrix over F8

2 for β2 = − 14
16 as follows:







1 4 9 0 0
0 4 6 4 0
0 0 9 4 1
0 0 0 16 −2






.

Then, the matrices L
(β2)
0 , L

(β2)
1 , L

(β3)
2 and L

(β2)
3 are

L
(β2)
0 =







4 9 0 0
4 6 4 0
0 9 4 1
0 0 16 −2







, L
(β2)
1 =





6 4 0
9 4 1
0 16 −2



 ,

L
(β3)
2 =

(
4 1
16 −2

)

, L
(β2)
3 =

(
−2

)
.

Also, det(L
(β2)
0 ) = 576, det(L

(β2)
1 ) = −72, det(L

(β2)
2 ) = −24, det(L

(β2)
3 ) =

−2, det(L
(β2)
4 ) = 1. Therefore, Ei(2) (i = 0, 1, 2, 3, 4) are as follows:

E0(2) =(−1)0
(
4

0

)(
8− 4

0

)
(0!)2(576)

576
= 1,

E1(2) =(−1)1
(
4

1

)(
8− 4

1

)
(1!)2(−72)

576
= 2,

E2(2) =(−1)2
(
4

2

)(
8− 4

2

)
(2!)2(−24)

576
= −6,

E3(2) =(−1)3
(
4

3

)(
8− 4

3

)
(3!)2(−2)

576
= 2,

E4(2) =(−1)4
(
4

4

)(
8− 4

4

)
(4!)2(1)

576
= 1.
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Thus, a vector (1, 2,−6, 2, 1) is the second row vector of the first eigenmatrix
P of J(8, 4). In fact, the first eigenmatrix P of J(8, 4) is as follows:









1 16 36 16 1
1 8 0 −8 −1
1 2 −6 2 1
1 −2 0 2 −1
1 −4 6 −4 1









.
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