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Abstract. We propose an accurate approximation method via discrete Krawtchouk or-

thogonal polynomials to the distribution of a sum of independent but non-identically

distributed binomial random variables. This approximation is a weighted binomial distri-

bution with no need for continuity correction unlike commonly used density approximation

methods such as saddlepoint, Gram-Charlier A type(GC), and Gaussian approximation

methods. The accuracy obtained from the proposed approximation is compared with sad-

dlepoint approximations applied by Eisinga et al. [4], which are the most accurate method

among higher order asymptotic approximation methods. The numerical results show that

the proposed approximation in general provide more accurate estimates over the entire

range for the target probability mass function including the right-tail probabilities. In

addition, the method is mathematically tractable and computationally easy to program.

1. Introduction

Statistical methods involving the convolutions of sequences of random numbers
are useful in many scientific fields. Especially the convolution of the independent
binomial variable is utilized in such as reliability theory of engineering systems,
acceptance survey random sampling in connection with ascertained statistical data,
number of claims in insurance mathematics and default models for financial credit
risks. For instance, Ong [7] utilized the convolution of two binomial variables in
several physical and stochastic models, Benneyan and TaŞeli [1] used the convo-
lution for measuring qualities of bundle compliances in health care organizations,
and Smalley et al. [9] used it to analyze DNA sequence in the context of a genome
search.
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The exact distribution of the convolution is possible to calculate via combina-
torial approach relying on modern computing facilities. In order to illustrate the
computational complexity of the combinatorial approach, the exact distribution
of a convolution of two discrete random variables Y and Z can be obtained from
calculating all the combinations based on the following formula;

Pr(Y + Z = j) =

j∑
i=0

Pr(Y = i) ·Pr(Z = j − i),

where j is the possible outcomes of the convolution. We easily see that the compu-
tation for the convolution can be extremely heavy when the number of components
and the size parameters of the components are increasing, which can often occur,
for instance, in the reliability for k-out-of n system and number of defaults under
credit risk rating system. The exact expressions for the probability mass functions
of the general case of the convolutions are not available, but the exact probabilities
are feasible to computationally obtain via recursive or combinatorial methods. But
their computations are complicated and inefficient, especially when the number of
outcomes with non-zero probability is large.

In the first step, the exact probability mass function of a convolution of two
binomial variables can be expressed in explicit form using Gaussian hypergeometric
function 2F1, as shown in Ong [7]. The probability mass function of S2 = X1 +X2

where Xi ∼ Bin[mi, pi] is

Pr(S2 = k) =
(m1 +m2)!

k!(m1 +m2 − k)!
(1− p1)m1pk2(1− p2)m2−k×

2F1

(
−m1,−k;−m1 −m− 2; 1− (1− p1)p2

(1− p2)p1

)
.

But the expression for the exact probability mass function of binomial convolutions
with more than three components becomes very complicated and challenging to
analytically obtain. On denoting a binomial convolution by Sn =

∑n
i=1Xi where

the independent Binomial random sequence of Xi with non-identical parameters
mi and pi, that is, Xi ∼ Bin(mi, pi), Shah [8] provided the following two recurrent
relations,

Pr(Sn = m) =
m∑
j=1

Pr(Sn = m− j)
mj!

n∑
i=1

∂jCXi(ln y)

∂yi

∣∣∣
y→0

,

where ∂j denotes the jth order partial differentiation and CX(z) = n(pez + 1− p),
and

(1.1) Pr(Sn = x) =



n∏
i=1

(1− pi)mi for x = 0

1
x

x∑
j=1

(−1)j−1(Pr(Sn = x− j)
n∑
i=1

mi[
1− pi
pi

]j) for x > 0.
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Efforts for accurate and efficient approximations have been made to overcome
this problem of computational complexity. Especially, approximation methods with
closed form expressions are recently explored in computational and statistical lit-
eratures. See, for instance, Benneyan and TaŞelt [1], Hong [6] and Eisinga et al.
[4]. Recently, Eisinga et al. [4] explained that saddlepoint mass approximations
obtain superiority in accuracy to other existing approximation methods including
asymptotic distributions such as Binomial approximation, Poisson approximation
and Gaussian approximation, and higher order asymptotic approximations such as
GC approximation.

In this paper, we aim to provide a new accurate approximation method with
relatively simple closed form expression to the probability mass function of the
convolution. The new method provides in general more accurate estimates than the
saddlepoint approximations of Eisinga et al. [4]. And the new approximation is very
simple in functional expression and easy to implement in symbolic computational
packages. In addition, this approximation doesn’t require continuity correction
unlike commonly used density approximation methods such as saddlepoint, GC
and Gaussian approximations.

The rest of this paper is organized as follows: In Section 2, some benchmark
saddlepoint approximation techniques are briefly explained. Section 3 proposes a
new approximation methods of the discrete Krawtchouk polynomial approximants.
Section 4 illustrated the details of the proposed technique via numerical examples
for comparison purposes. And the concluding remarks follow in Section 5.

2. Benchmark Saddlepoint Approximations

Some versions of saddlepoint approximations were proposed by Eisinga et al. [4]
for obtaining approximate distributions of binomial convolutions. For illustrating
the computational comparisons, we review the saddlepoint approximations. The
cumulant generating function of the binomial convolution denoted by κSn(t) is ob-
tained by taking the logarithm of the moment generating function,

(2.1) κSn
(t) =

n∑
i=1

mi ln
(

1− pi + pie
t
)
, t ∈ (−∞,∞).

Saddlepoint solution (t = t̂) is obtained from equating κ
(1)
Sn

(t) =

n∑
i=1

mi qi = x,

where κ
(i)
Sn

(·) denotes the ith derivative of the cumulant generating function and qi =
pi exp(t)/{1 − pi + pi exp(t)}. The saddlepoint solution can be solved analytically
or numerically.

First-order saddlepoint approximation

The saddlepoint approximation to the probability density function is

(2.2) P̂r1(Sn = x) =
(

2π κ
(2)
Sn

(t̂)
)−1/2

exp(κSn
(t̂)− x t̂) ,
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where κ
(2)
Sn

(t) =

n∑
i=1

mi qi (1− qi). This saddlepoint approximant is not a bona fide

distribution that sums to unity. The normalized saddlepoint approximant can be
modified by making use of a normalizing constant τ , that is,

(2.3) P̄r1(Sn = x) = τ P̂r1(Sn = x),

where the normalization constant τ can be calculated by making use of numerical
integration methods such as trapezoid rule because the saddlepoint approximation
can not be analytically integrable. And the approximate tail probabilities of Sn
can also be determined by numerical integration. This tail approximant is denoted
by P̄r2(Sn > x) in numerical examples. And it should be mentioned that the
saddlepoint solution equation cannot be solved at the endpoints 0 and max(x) =
n∑
i=1

mi of the support of Sn. For a sum of n binomial random variables, the exact

boundary probabilities are given by Pr(Sn = 0) =

n∏
i=1

(1 − pi)
mi and Pr(Sn =

max(x)) =

n∏
i=1

pmi
i .

The Lugannani and Rice formula with continuity correction is used to determine
the saddlepoint approximation to tail probability in discrete setting,

(2.4) P̂r3 = Pr(Sn ≥ v) ≈ 1− Φ(ŵ) + φ(ŵ)(
1

û
− 1

ŵ
),

where ŵ =
√

2(t̂v − κSn
(t̂)) sgn(t̂), û = (1 − e−t̂)

√
κ
(2)
Sn

(t̂), sgn(t̂) = ±1, 0 if t̂ is

positive, negative, or zero, and φ(·) is the standard normal density function and
Φ(·) is the corresponding cumulative distribution function. This Lugannani and
Rice formula is undefined if û = ŵ = 0, which occurs when x = E(Sn) or t̂ = 0.
The approximation in such case should be

(2.5) P̂r3 =
1

2
− {2π}−1/2{1

6
κ
(3)
Sn

(0){κ(2)Sn
(0)}−3/2 − 1

2
{κ(2)Sn

(0)}−1/2},

where κ
(3)
Sn

(0) =
∑n
i=1mipi(1− pi)(1− 2pi).

Second-order saddlepoint mass approximation

Since the order of error for the first-order saddlepoint approximation is O(n−1), we
further minimize the error by making use of the second-order approximation;

(2.6) P̂r2(Sn = x) = P̂r1(Sn = x){1 +
1

8

κ
(4)
Sn

(t̂)

{κ(2)Sn
(t̂)}2

− 5

24

{κ(2)Sn
(t̂)}2

{κ(2)Sn
(t̂)}3

+O(n−2)},
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where κ
(3)
Sn

(t̂) =
∑n
i=1miqi(1 − qi)(1 − 2qi) and κ

(4)
Sn

(t̂) =
∑n
i=1miqi(1 − qi){1 −

6qi(1− qi)}. And the second order continuity-corrected saddlepoint approximation
to the right-tail probability is also given as

(2.7) P̂r4(Sn ≥ x) = P̂r3(Sn ≥ x)− φ(ŵ)
{ 1

û2
(
1

8
k̂4 −

5

24
k̂23)− 1

û32
− k̂3

2û22
+

1

ŵ3

}
,

where û2 = û{κ(2)Sn
(û)}1/2, k̂3 = κ

(3)
Sn

(û){κ(2)Sn
(û)}−3/2 and k̂4 = κ

(4)
Sn

(û){κ(2)Sn
(û)}−2.

3. Krawtchouk Polynomial Approximation

We propose a new approximation method of Krawtchouk polynomial approx-
imation for the distributions of binomial convolutions. The Krawtchouk orthog-
onal polynomial of degree k with respect to a binomial variable, on denoting
B(i ; θ,N) = B(x ; θ,N) =

(
N
x

)
θx(1 − θ)N−x with a proportion parameter θ and a

positive integer valued index parameter N , is given by

(3.1) Hk(x; θ,N) = 2F1(−k, −x; −N ;
1

θ
) ,

where k = 0, 1, . . . , N , x = 0, 1, . . . , N , 0 < θ < 1 and N ∈ N. Then, the or-
thogonality factor, Qk, of the Krawtchouk polynomial of degree k can be obtained
by

N∑
x=0

B(x; θ,N)Hk(x; θ,N)Hj(x; θ,N) =

Qk = (−1)kk!
(−N)k

(
1−θ
θ

)k
for k = j

0 for k 6= j,

where Q0 = 1 and (a)b =
∏b−1
k=0(a + k) is a Pochhammer function. Then, the

proposed approximant of degree d, denoted by fHd , can be expressed as

(3.2) fHd (x) = B(x; θ,N)

d∑
k=0

ηkHk(x; θ,N),

where η0(= 1), η1, . . . , ηd form coefficients of the linear combination of the linearly
independent Krawtchouk polynomials. For parameter estimations, two parameters
of the reference Binomial distribution and the coefficients of the linear combination
of the Krawtchouk polynomials can be obtained by method of moments to make
use of easily calculable moments of the target convolution. On denoting µSn(h) the
hth order moment of the convolution, since the moment generating function of the
convolution is available in closed form, we can easily evaluate its higher moments
from differentiating the moment generating function, that is,

µSn
(h) =

dhMSn
(z)

dzh

∣∣∣
z→0

.
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First, the parameters of baseline Binomial distribution are determined as N̂ =∑n
i=0mi and θ̂ =

∑n
i=0mipi

N̂
. Note that N is simply a sum of all Binomial trials

because it is just the index parameter. Then, the coefficients ηh of the Krawtchouk
polynomial approximant can be accordingly estimated as

ηh =
1

Qh

k∑
j=0

δk,j µ̂Sn(j) , h = 1, . . . , d,(3.3)

where δh,k is the coefficient of xk in the Krawtchouk polynomial of order h, that

is, Hh(x; θ̂, N̂) =
∑k
j=0 δk,j x

j . This approximant is very flexible to adapt the
higher order exact moments of the target convolution unlike the usual asymptotic
approximations that are limited to utilizing only 2 to 3 moments.

4. Numerical Examples

We examined numerical comparisons of the proposed methods and several ex-
isting methods. The cases from Butler ([3], page 11), Benneyan and TaŞeli [1] and
Eisinga et al. [4] are revisited for fair comparisons. Each cases are illustrated in
the following three examples. The parameter values of n, mi and pi are provided in
the panels of Table 1.∼ 5. Pr(x) and Sim respectively represent the exact proba-
bility obtained from Equation (1.1) and simulation with 10 million replicates. And

P̂r1(x), P̄r1(S) and P̄r2(S), which are employed from Butler [3] and Eisinga et
al. [4], represent saddlepoint approximations from Equations (2.2), (2.3) and (2.5),
respectively. And P̄r6(S) represents the GC approximation of order 6 employed
by Benneyan and TaŞeli [1]. The single binomial approximation (Bin) with index∑
mi and probability

∑n
i=1 pi
n , the Gaussian approximation (φ) matching the first

and second moments and Poisson approximation (Pois) matching the first moment
are also displayed for comparison. Finally, the Krawtchouk polynomial approximant
of a degree d (fHd (x)) are computed. The results of the Krawtchouk polynomial
approximants are rounded at the decimals shown in tables in Eisinga et al. (2013)
for fair comparisons.

Example 1: Revisiting a case of Butler [3]
Butler [3] computed the case of a sum of three binomial variables with mi = 6, 4,
2 and pi = 1/15, 2/15, 4/15 and claimed that unnormalized and normalized sad-
dlepoint approximations, which are comparable, perform better than Poisson and
Gaussian approximations. As shown in Table 1, the Krawtchouk polynomial ap-
proximants of 3 degree performs moderately well, specially in the mode area, but not
extreme well in the right tail. But when the degree of the Krawtchouk polynomial
approximant increases, the method provides extremely accurate approximations in
both sides of center and right tail. The Krawtchouk polynomial approximant of 6
degree is nearly exact and outperforms any other approximation techniques.
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x Pr(x) P̂r1(x) P̄r1(x) Pois(x) φ(x) fH3 (x) fH4 (x) fH6 (x)
1 0.3552 0.3845 0.3643 0.3384 0.3296 0.3555 0.3553 0.3552
3 0.1241 0.1273 0.1206 0.1213 0.1381 0.1240 0.1241 0.1241
5 0.027261 0.027392 0.027004 0.01305 0.022221 0.027274 0.027253 0.027261
7 0.031032 0.031052 0.049963 0.036682 0.051369 0.049876 0.031038 0.031032
9 0.063633 0.063738 0.063541 0.041996 0.0103238 0.062659 0.064406 0.063630
11 0.092279 0.092472 0.092342 0.063904 0.0162938 0.0116093 0.096162 0.092219

Table 1: The exact and approximated probabilities for the sum of n = 3 binomial
variables when mi = 6, 4, 2 and pi = 1/15, 2/15, 4/15.

Example 2: Revisiting a case of Benneyan and TaŞeli [1]
We examined numerical comparisons in this case of a sum of 10 binomial variables
with the parameter values of mi = 12, 14, 4, 2, 20, 17, 11, 1, 8, 11 and pi = 0.074,
0.039, 0.095, 0.039, 0.053, 0.043, 0.067, 0.018, 0.099, 0.045, which was originally used
in Benneyan and TaŞeli [1] and revisited in Eisinga et al. [4]. Table 2 shows that the
Krawtchouk polynomial approximants of 4 and 6 degrees are nearly exact again and
don’t have even the very little errors that the normalized second-order saddlepoint
approximation P̄2(s), which was claimed to have a superior fit in Eisinga et al. [4],
showed. More interestingly, very small error for the probability of x = 19 from the
Krawtchouk polynomial approximants of 4 degree was removed out by increasing the
degree of the Krawtchouk polynomial approximant. The Krawtchouk polynomial
approximants of 6 degrees provides the same probabilities with the exact ones after
rounding.

x Pr(x) P̄r2(x) P̄r6(x) Bin(x) φ(x) Pois(x) fH4 (x) fH6 (x)
1 0.0165 0.0164 0.0172 0.0168 0.0215 0.0187 0.0165 0.0165
3 0.0994 0.0994 0.0986 0.0999 0.0862 0.1021 0.0994 0.0994
5 0.1716 0.1716 0.1719 0.1712 0.1641 0.1673 0.1716 0.1716
7 0.1346 0.1346 0.1346 0.1340 0.1481 0.1305 0.1346 0.1346
9 0.0587 0.0587 0.0590 0.0586 0.0634 0.0594 0.0587 0.0587
11 0.0160 0.0160 0.0156 0.0161 0.0129 0.0177 0.0160 0.0160
13 0.022912 0.022913 0.023013 0.022969 0.021237 0.023719 0.022912 0.022912
15 0.033751 0.033752 0.034015 0.033893 0.045646 0.035805 0.033751 0.033751
17 0.043543 0.043544 0.042621 0.043762 0.051222 0.046995 0.043543 0.043543
19 0.052524 0.052525 0.067245 0.052756 0.071253 0.056704 0.052525 0.052524

Table 2: The exact and approximated probabilities for the sum of n = 10 binomial
variables when mi = 12, 14, 4, 2, 20, 17, 11, 1, 8, 11 and pi = 0.074, 0.039, 0.095,
0.039, 0.053, 0.043, 0.067, 0.018, 0.099, 0.045.

In addition, a very recent paper of Butler and Stephens [2] proposed an ex-
tremely accurate approximant, namely Kolmogorov approximation. In order to
make fair comparisons between the Kolmogorov approximation and our proposed
method, we revisit the example of Benneyan and TaŞeli [1], which was also used
in Butler and Stephens [2]. Refer Table 7 of Butler and Stephens [2]. We extend
more decimals since both methods provide very accurate approximation. As shown
in Table 3, they provide identical results except for Pr(3). Although the proposed
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method approximates closer ones to the exact Pr(3) than the Kolmogorov approx-
imation, it is arguable to determine superiority since the approximation errors are
extremely small.

x Pr(x) K(4) K(6) fH4 (x) fH6 (x)
1 0.01648856 0.0164885 0.0164886 0.0164885 0.0164886
3 0.09937507 0.0993753 0.0993750 0.0993751 0.0993751
5 0.17156980 0.1715700 0.1715700 0.1715700 0.1715700
7 0.13457790 0.1345780 0.1345780 0.1345780 0.1345780

Table 3: Numerical comparison between the Kolmogorov and the proposed ap-
proximations.

Example 3: Revisiting cases of Eisinga et al. [4]
Eisinga et al. [4] examined two interesting cases with extremely small probabilities
and long tails for both sides. First, in Table 4, the case with very small probabilities
are computed. This case may be interesting to credit risk practitioners because de-
fault probabilities of obligors are very small. Poisson distribution is often utilized in
this case on the basis of Poisson approximation via probability generating function,
see Gordy [5]. Eisinga et al. [4] claimed that both the Poisson and the binomial
approximations provide superior fits in the center of the distribution, whereas the
saddlepoint approximation P̄2(s) outperforms in the right tail. As shown in Table
4, the proposed Krawtchouk polynomial approximants of 2 and 4 degrees perform
extremely well without restriction in any areas. They outperform Poisson, binomial
and saddlepoint approximations over the entire range of the distribution including
areas of the center and left and right tails. It is also interesting that simulation (Sim)
with 10 million replicates is not the best performing in this case. From this result,
we can see that accurate approximation methods with closed form expressions are
important.

x Sim Pr(x) P̄r2(x) P̄r6(x) Bin(x) φ(x) Pois(x) fH2 (x) fH4 (x)
1 0.3234 0.3231 0.3227 0.3690 0.3230 0.4496 0.3230 0.3231 0.3231
2 0.0918 0.0924 0.0928 0.0480 0.0923 0.0889 0.0925 0.0924 0.0924

3 0.0176 0.0176 0.0177 0.0284 0.0176 0.023059 0.0176 0.0176 0.0176

4 0.022601 0.022514 0.022525 0.022794 0.022508 0.041834 0.022525 0.022514 0.022514

5 0.03275 0.032868 0.032881 0.041707 0.032859 0.071915 0.032891 0.032868 0.032868

6 0.0429 0.042723 0.042735 0.071167 0.042713 0.0113482 0.042759 0.042723 0.042723

7 0.055 0.052213 0.052224 0.0111077 0.052205 0.0151103 0.052256 0.052213 0.052213

Table 4: The exact and approximated probabilities for the sum of n = 10 binomial
variables when mi = 120, 140, 40, 20, 200, 170, 110, 10, 80, 110 and pi = 0.0374,
0.0339, 0.0395, 0.0339, 0.0353, 0.0343, 0.0367, 0.0318, 0.0399, 0.0345.

Table 5 shows a case with extreme long tails for both sides. As expected from the
central limit theorem, Gaussian and the GC approximation P̄6(S) are performing
very well. It is surprising that the saddlepoint approximation yields even more
accurate results. But note that the Krawtchouk polynomial approximant doesn’t
work very well in this case. Binomial based approximants seem to have difficulties
to capture the long tail behavior of both sides.
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x Pr(x) P̄r2(x) P̄r6(x) Bin(x) φ(x) Pois(x) fH
6 (x)

510 0.052363 0.052363 0.052363 0.041058 0.052346 0.035109 0.052898
520 0.043730 0.043730 0.043730 0.031056 0.043706 0.021458 0.043774
530 0.033638 0.033638 0.033638 0.037061 0.033623 0.023436 0.033660
540 0.022195 0.022195 0.022195 0.023162 0.022191 0.026702 0.022244
550 0.028202 0.028202 0.028202 0.029471 0.028201 0.01087 0.028450
560 0.0190 0.0190 0.0190 0.0190 0.0190 0.0147 0.0196
570 0.0272 0.0272 0.0272 0.0253 0.0272 0.0166 0.0283
580 0.0242 0.0242 0.0242 0.0224 0.0241 0.0157 0.0254
590 0.0133 0.0133 0.0133 0.0132 0.0133 0.0126 0.0142
600 0.024501 0.024501 0.024501 0.025141 0.024501 0.028500 0.024907
610 0.039419 0.039419 0.039419 0.021321 0.039460 0.024854 0.021058
620 0.031213 0.031213 0.031213 0.032230 0.031230 0.032353 0.031447
630 0.059581 0.059581 0.059581 0.042463 0.059902 0.039708 0.041352
640 0.064630 0.064630 0.064628 0.051773 0.064931 0.033418 0.051003

Table 5: The exact and approximated probabilities for the sum of n = 10 binomial
variables when mi = 120, 140, 40, 20, 200, 170, 110, 10, 8, 110 and pi =0.74, 0.39,
0.95, 0.39, 0.53, 0.43, 0.67, 0.18, 0.99, 0.45.

5. Concluding Remarks

In this paper, a new approximation technique for the density and distribution
functions of sums of independent but nonidentical Binomial random variables was
proposed by making use of discrete Krawtchouck orthogonal polynomials. The pro-
posed Krawtchouck polynomial approximants don’t require continuity correction
unlike commonly utilized methods due to the property of discrete Krawtchouck or-
thogonal polynomials. Note that the Krawtchouck polynomial approximant utilizes
only first several moments whereas the saddlepoint approximation requires cumu-
lant generating function, from which all series of moments can be generated. In the
numerical examples, the Krawtchouck polynomial approximants utilized just 4 or 6
moments. Therefore, we conclude that even though the proposed method utilized
less information of the Binomial convolution than saddlepoint approximations, the
proposed method was shown to provide the most accurate estimates except for a
case with extremely long tails in both sides. In addition, it should be mentioned
that the proposed method is mathematically simple and computationally easy to
program.
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