• 제목/요약/키워드: Krasnoselski

검색결과 6건 처리시간 0.016초

MODIFIED KRASNOSELSKI-MANN ITERATIONS FOR NONEXPANSIVE MAPPINGS IN HILBERT SPACES

  • Naidu, S.V.R.;Sangago, Mengistu-Goa
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.753-762
    • /
    • 2010
  • Let K be a nonempty closed convex subset of a real Hilbert space H. Let T : K $\rightarrow$ K be a nonexpansive mapping with a nonempty fixed point set Fix(T). Let f : K $\rightarrow$ K be a contraction mapping. Let {$\alpha_n$} and {$\beta_n$} be sequences in (0, 1) such that $\lim_{x{\rightarrow}0}{\alpha}_n=0$, (0.1) $\sum_{n=0}^{\infty}\;{\alpha}_n=+{\infty}$, (0.2) 0 < a ${\leq}\;{\beta}_n\;{\leq}$ b < 1 for all $n\;{\geq}\;0$. (0.3) Then it is proved that the modified Krasnoselski-Mann iterative sequence {$x_n$} given by {$x_0\;{\in}\;K$, $y_n\;=\;{\alpha}_{n}f(x_n)+(1-\alpha_n)x_n$, $n\;{\geq}\;0$, $x_{n+1}=(1-{\beta}_n)y_n+{\beta}_nTy_n$, $n\;{\geq}\;0$, (0.4) converges strongly to a point p $\in$ Fix(T} which satisfies the variational inequality

    $\leq$ 0, z $\in$ Fix(T). (0.5) This result improves and extends the corresponding results of Yao et al[Y.Yao, H. Zhou, Y. C. Liou, Strong convergence of a modified Krasnoselski-Mann iterative algorithm for non-expansive mappings, J Appl Math Com-put (2009)29:383-389.

EXISTENCE RESULTS FOR NEUTRAL FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN BANACH SPACES

  • Chandrasekaran, S.;Karunanithi, S.
    • Journal of applied mathematics & informatics
    • /
    • 제33권1_2호
    • /
    • pp.45-60
    • /
    • 2015
  • This paper is concerned with the existence of mild solutions for partial neutral functional integrodifferential equations with infinite delay in Banach spaces. The results are obtained by using resolvent operators and Krasnoselski-Schaefer type fixed point theorem. An example is provided to illustrate the results.

EXISTENCE OF POSITIVE SOLUTIONS FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH A SINGULAR WEIGHT

  • Jeongmi Jeong;Yong-Hoon Lee
    • East Asian mathematical journal
    • /
    • 제40권1호
    • /
    • pp.51-61
    • /
    • 2024
  • In this work, we study the existence of a positive solution for nonlinear fractional differential equation with a singular weight. For the proof, we introduce newly defined solution operator and use well-known Krasnoselski's fixed point theorem. We also give an example with a singular weight which may not be integrable.

PERIODIC SOLUTIONS IN NONLINEAR NEUTRAL DIFFERENCE EQUATIONS WITH FUNCTIONAL DELAY

  • MAROUN MARIETTE R.;RAFFOUL YOUSSEF N.
    • 대한수학회지
    • /
    • 제42권2호
    • /
    • pp.255-268
    • /
    • 2005
  • We use Krasnoselskii's fixed point theorem to show that the nonlinear neutral difference equation with delay x(t + 1) = a(t)x(t) + c(t)${\Delta}$x(t - g(t)) + q(t, x(t), x(t - g(t)) has a periodic solution. To apply Krasnoselskii's fixed point theorem, one would need to construct two mappings; one is contraction and the other is compact. Also, by making use of the variation of parameters techniques we are able, using the contraction mapping principle, to show that the periodic solution is unique.

APPROXIMATION METHODS FOR FINITE FAMILY OF NONSPREADING MAPPINGS AND NONEXPANSIVE MAPPINGS IN HILERT SPACESE

  • Kang, Jinlong;Su, Yongfu
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.87-98
    • /
    • 2010
  • The purpose of this paper is to prove a weak convergence theorem for a common fixed points of finite family of nonspreading mappings and nonexpansive mappings in Hilbert spaces. The results presented in this paper extend and improve the results of Mondafi [A. Moudafi, Krasnoselski-Mann iteration for hierarchical fixed-point problems, Inverse Problems 23 (2007) 1635-1640], and Iemoto and Takahashi [So Iemoto, W.Takahashi, Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, Nonlinear Analysis (2009), doi:10.1016/j.na.2009.03.064].

EXISTENCE OF POSITIVE PERIODIC SOLUTIONS OF FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

  • Rezaiguia, Ali;Ardjouni, Abdelouaheb;Djoudi, Ahcene
    • 호남수학학술지
    • /
    • 제40권1호
    • /
    • pp.1-11
    • /
    • 2018
  • We use Krasnoselskii's fixed point theorem to show that the neutral differential equation $$\frac{d}{dt}[x(t)-a(t)x(\tau(t))]+p(t)x(t)+q(t)x(\tau(t))=0,\;t{\geq}t_0$$, has a positive periodic solution. Some examples are also given to illustrate our results. The results obtained here extend the work of Olach [13].