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APPROXIMATION METHODS FOR FINITE FAMILY OF
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MAPPINGS IN HILERT SPACESE
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ABSTRACT. The purpose of this paper is to prove a weak convergence
theorem for a common fixed points of finite family of nonspreading map-
pings and nonexpansive mappings in Hilbert spaces. The results presented
in this paper extend and improve the results of Mondafi [A. Moudafi,
Krasnoselski-Mann iteration for hierarchical fixed-point problems, Inverse
Problems 23 (2007) 1635-1640], and lemoto and Takahashi {S. Iemoto,
‘W.Takahashi, Approximating common fixed points of nonexpansive map-
pings and nonspreading mappings in a Hilbert space, Nonlinear Analysis
(2009), doi:10.1016/;.n2.2009.03.064].
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1. Introduction

Let H be a real Hilbert space with inner product (-,) and norm || - ||, respec-
tively. C is a nonempty closed convex subset of H, A mapping T : C — (' is
said to be monexpansive if

1Tz — Tyll < |z -yl

for all z,y € C; If the set of fixed points of T(T) (i.e. F(T) ={x € C: Tx = z})
is nonempty, then T is said to be quasi-nonexpansive if

1Tz — p|| < [lz - pli
forall z € C and p € F(T). A mapping F is said to be firmly nonexpansive if
|Fz— Fyll < (x -y, Fz - Fy) (1.1)
for all z,y € C; see, for instance, Browder [1}, Goebel and Kirk [2], Reich and
Shoikhet [3], Iemoto and Takahashi [4]. 1t is known that any firmly mapping F
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is nonexpansive and of form F = %(I + T') with some nonexpansive mapping 7’;
see [2, 3] for instance.

The following nonlinear mapping is introduced by Kohsaka and Takahashi [5]
recently. Let E be a smooth, strictly convex and reflexive Banach space, Let J
be the duality mapping of E and Let C be a nonempty closed convex subset of
E. Then, a mapping S : C — C is said to be nonspreading if

Q(Sz, Sy) + Q(Sy, Sz) < Q(Sz,y) + Q(Sy, z)

for all z,y € C, where Q(z,y) = ||z||? — 2(z, Jy) + ||yl|* for all z,y € E.
they considered such a mapping to study the resolvents of a maximal monotone
operator in Banach space. In the case when E is a Hilbert space, we know that
Q(z,y) = ||z — y||? for all z,y € E, then a nonspreading mapping S : C — C in
a Hilbert space H is defined as follows:

2118z — SylI* < ISz — ylI* + llo — Sy|l? (1.2)

for all z,y € C. It is know that if the set of fixed points of a nonspreading
mapping is nonempty, the nonspreading mapping is quasi-nonexpansive.

On the other hand, weak convergence theorems for two nonexpansive map-
pings T3, T» of C into itself were introduced by Takahashi and Tamura[6]. They
considered the following iterative procedure:

1 €C,
Tn4l = (1 - an)xn + anTl{/BnT2xn + (]- - /Bn)xn}

forn=1,2,..., where F(T}) and F(T%) are nonempty. Mondafi[7] also consid-
ered another iterative scheme for two nonexpansive mappings 77,72 of C into
itself:

X € C,
Tnt1 = (1 — an)@n + an{BnTizn + (1 — Br)Tozn}

forn =1,2,..., where F(T;) and F(T3) are nonempty. Recently, Iemoto and
Takahashi [4] proved weak convergence theorems for a spreading mapping and
a nonexpansive mapping

1 € C,
Tn41l = (1 - an)xn + Oén{,BnSfEn + (1 - ,@n)T.TJn}

forn=1,2,..., where F(S) and F(T) are nonempty. In this paper, motivated
by Mondafi[7], Iemoto and Takahashi[4], we introduce the following iterative
sequence: Let S;, where ¢ =1,2,...N, be a finite family of nonspreading map-
pings of H and F;, where ¢ = 1,2,...N, be a finite family of nonexpansive
mappings of H, respectively. Let F(S;) denote the fixed point set of S; and
F(T;) denote the fixed point set of T;, i.e., F(S;) = {z € H : S;xz = z} and
F(T;) = {z € H : T;x = z}, Stating with an arbitrary initial z; € C, define a
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sequence {z,} recursively by
Try1 = (1 — n)@n + an{BnSnn + (1 = Bn)TnZn} (1.3)

where S, = Sy, (moqyny and Ty, = Ty (moqyny and the mod function takes values
in 1,2..., N, then we prove that {z,} defined by (1.3) converges weakly to a
common fixed point for finite family of two kinds of mappings in Hilbert spaces.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by
R the set of real numbers. For the sequence {z,} in H, we write z, — z to
indicate that the sequence {z,} converges weakly to z and x,, — z implies that
{z} converges strongly to z. In a real Hilbert space H, we have

Az + (1= Nyl? = Mal® + @ =Dlyl® = A1 =Vl -9l 21

for all z,y € H and A € R. Let C be a nonempty closed convex subset of H.
Then for any x € H, there exists a unique nearest point in C, denoted by Pc(x),
such that ||z — Po(z)|| < llz —y|| for all y € C. Such a P is called the metric
projection of H onto C. We know that Pc is firmly nonexpansive. Further, for
z€ Hand z € C,

z=Pex & {(z—z,z-y) >0 forallyeC
We also know that for any sequence {z,} C H with z, — x, the inequality
liminf ||z, — || < liminf ||z, — yl|
n—o =00

holds for every y € H with = # y, (we usually call it Opial’s condition); see [8,9]
for more details. Further, in a Hilbert space, we have

20 ~y,z —w) = o —wl* + |y — 2lI* = e — 2)* ~ lly — wl|l” (2.2)
Using (2.2), we can show that the following lemma [4].

Lemma 2.1. Let C be a nonempty closed convex subset of H and let F' be a
firmly nonezpansive of C into itself. Then F is nonspreading.

Lemma 2.2. Let C be a nonempty closed convex subset of H, a mapping F :
C — C is firmly nonexpansive if and only if

1Fe - Fy|* < flo - ylI* = |z - Fo) — (y - Fy)|I* (2.3)

forallz,y € C.
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Proof.. for allx,y € C,
IFz = Fy||* < ||z~ y|I* - ||(z - Fz) — (y — Fy)|?
= |Fz — Fy|* < ||z — y|f?
—((@—y) - (Fg - Fy),(z - y) — (Fz - Fy))
= |Fz - Fy|* < |lz -yl - (=~ y) — (z — p))
+2(z —y,Fz — Fy) — (Fx — Fy, Fx — Fy)
= |[Fz ~ Fy||* < (z -y, Fx — Fy) — |[Fz — Fy|?
< |Fz - Fy|? < (z -y, Fx — Fy)

Iemoto and Takahashi [4] proved the following:

Lemma:2.3. Let C be a nonempty closed conver subset of H. Let S be a
nonspreading mapping of C into itself and let A=1—S. Then

1
|4z — Ay|)* < (z -y, Az — Ay) + 5 (14z]|” + [ 4y]1*)

foralliz,y € C.

Lemma:2.4. Let C be a nonempty closed conver subset of H, Then a mapping
S 1 C'—-C is nonspreading if and only if

1Sz — SylI* < |z — yl|* + 2(z ~ Sz,y — Sy) (2.4)
forallz,yeC.

Nonspreading mappings have been investigated no long time, we give two
examples of this mappings:

Example 1. Let £ = (—00, +00) be endowed with the Euclidean norm lz—yll =
|z — y|. Assumed that C = [0, +o0) and S : C — C is defined by

0,1
Gpod® TE [0,1)

1, z€[l,+00),
We can prove S is nonpreading mappings.

Example 2. Let £ = (~o00, +00) be endowed with the Euclidean norm le—yll =
|z~ y|. Assumed that K = [~3,3] and S : K — K is defined by

0, z € [-2,2],
Sz = ICE+1|, CITE[—-?),—-Z),
lz—1], z€(-23].

Then«, S is not nonexpansive but nonspreading.
We know form Kohsaka and Takahashi [5] the following theorems.
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Theorem 2.1. Let H be a Hilbert space, let C be a nonempty closed convex
subset of H and let S be a nonspreading mapping of C into itself. Then the
F(S) is closed and convex. Furthermore, the following are equivalent:

(i) There exists x € C such that {S™z} is bounded;

(ii) F(S) is nonempty.

The following lemma is in [10,11].

Lemma 2.5. Let {a,}, {8} be sequence of nonnegative real numbers such that
Yo san=00. If 307 anfBy < 00, then liminf, o Bn = 0.

Tan and Xu [12] proved the following: see also [13,14].

Lemma 2.6. Suppose that {s,} and {e,} are sequences of nonnegative real
numbers such that s,11 < s, +e, for allm € N. If fozl en < 00, then
liminf, _, o 8, exists.

Using Lemma 2.3, Iemoto and Takahashi [4] proved the following result which
be said to the demiclosedness of a nonspreading mapping and essentially used
in the proof of our main theorem.

lemma 2.7. Let H be a Hilbert space and let C be a nonempty closed convex
subset of H. Let S be a nonspreading mapping of C into itself such that F(S) #
0. Then S is demiclosed, i.e., x, — p and ||z, — Sz,|| — 0 imply p € F(S).

3. Main results

Now we prove our main results.

Theorem 3.1. Let H be a Hilbert space and C be a nonempty closed convex
subset of H. Let S; : C — C fori = 1,2,...,N be a family of spreading
mappings of C into itself and T; : C — C fori = 1,2,...,N be a family of
nonexpansive mappings of C into itself, such that Fy(To # 0, where Fy =
017\;1 F(S;) and Fy := ﬂf\;l F(T;). A sequence of {x,} defined by (1.3), where
{ant, {Bn} be two real sequence in [0,1]. Then, the following hold:

(i) If liminf, o 0n(1—0) > 0 and Y00 (1—3,) < 00, then {z,} converges
weakly to p € Fy;

(1) If 00 an(l—an) =00 and Y oo | Bn < o0, then {zn} converges weakly
top e Fy;

(i1i) If iminf, . (1 —ay) > 0 and liminf, oo B (1 = 8,) > 0, then {z,}
converges weakly to a common fized point of F1[) Fa.

Proof. Following lines of the proof of Theorem 3.1, we show that (i)-(iii) in
turn:

(i) The proof is divided into three steps.
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1. First, we show that {x,} is bounded. Indeed, let U, = 8,5, + (1 — 85Ty,
for p € F1 () F2, we have

#n+1 = pll = 11 = an)zp + anUy —pll
<A —an)llzn — ol + an|Unzs — pl|
< (1= an)llzn = pll + anllz, - pll
= |lzn — pll

for all n € N. Hence {x,,} is bounded and there exists limy_,o0 ||Zn — p|-

2. In this part, we show that ||z, — Sizn|| — 0, i = 1,2,...,N. Put
Zn+1 = (1 — on)zpn + 0nSpz, and A, = I — S,,. Then we have form Lemma 2.2
and A,p = 0 that

lzn+1 = 2l = [I(1 = an)zn + anSnzn — p||?
= [|zn —p — ann + Sl = ||Zn — P — anAnzn|?
= ||z —p”2 = 20 (xn — p, Anzp) + C"i"Anf’?n”2
< llzn = pl* ~ 20 {|| Anzn — Anp|?

1
= 5l 4nzall* + [ Anpl®)} + 7| Anza

1
<z —p||2 - 2an(”Anxn”2 - EHAnxnnz) + aillAnxnllz

= llzn = plI* = an(l — an)|| Anza|®
and hence
an(l = an)llAnzn))? < |2 = PI* = 2041 — pII? (3.1)
We also have
Zns1 = 2ol = (1 - n)Zn + onUnZp — (1~ an )2y — Spn]|
= an”ﬂnsnxn + (1 — Bu)Thzy, — Snxn”
= an(l = B ) Thzn — Spxnl-

Since 3= (1 - B,) < 00,we have ||z, — z,|| — 0 and hence lim,,_,., flzn — ol =
limp o0 ||Zn — pll, thus form (3.1) and liminf, e an(1 — &) > 0 have

lim [|Ayz,|| = lim |l&, — Spz,|| = 0.
n—00 n—o
Now for alli =1,2,..., N, from Lemma 2.4, we have

20 = Sptinll < llon = Tnsill + 1€nts = Snti®nsill + |SntiTnri — Snpizen]
S len = Znsill + 12nti = Snsiwnaill
+{llznti — xn|[2 + 2Tnti — Snti%ntis Tn — Sn+i37'n>}%
which on taking the limit n — oo yields

lim flz, — Spyizn] =0
n—0oc



Nonspreading mappings and nonexpansive mappings 93

foralli=1,2,...  N. Consequently, we have
lim ||z, — Siz,|| =0
n~—-00

3. Finally, we show that z, — p.

Since {z,} is bounded sequence, there exists a subsequence {z,,} C {z,}
such that {z,,} converges weakly to p. From Lemma 2.7, we obtain p € F).
To show our conclusion, it is sufficient to show that for another subsequence
{zn,} C {zn} such that {z,,} converges weakly to w € Fi, p = w. Before

proving this, we show that for any p € Fy, lim, o ||, — p|| exists. We have
that for all p € Fy,

[2n41 = pll = [I(1 = an)zn + anSn — pl|
< (1 —an)llzn — pll + anl|Snzn — pll
< lzn - pll
< llzn = pll + |z — 2all.

From Lemma 2.6, lim,, .o, ||z, — p|| exists. So, there exists lim,,_,, ||, — p|| for
all p € Fy because z, — z, — 0. Suppose that p # w. We have form Opial’s
theorem [9] that

lim |z, —pl| = lim ||lzn, - pfl < lim [z, ~w]]
n—oo 11— /00

= lim ||z, — ]l = lim [lz,, — v
o0 ]—'OO

n—
< lim |lzn; —pll = lim [z, —pl|
J—ro0 n—oo

This is a contradiction. So, {z,} converges weakly to p € F.
(ii) It follows from the proof of (i) that we show that lim, e [|Zn41 -z, =0.
Put z,11 = (1 — ap)zn + 0nThx, and B, =1 — S,,. we have

lZnt1 — znall = (1 - )T + anUny — (1 — an)zn — Tpal|
= an”/BnSnl'n + (]- - ﬁn)ann - Tnxn”
= O‘nﬁn”‘gnxn - Tnxnu-

So, {2y} is bounded since {z,} is bounded. For B is 1/2-inverse strongly mono-
tone (i.e. 3||Bpx — Boy|? < (z — y, Boz — Bny) and B,p = 0, we have

2041 = plI* = |(1 = an)zn + anTy, — p||?
=|zn —p —an(I - Tn)f'7n||2
= |z, — p”2 — 20y (®n — p, Baz) + O‘i”anHQ

and hence
an(l— O‘n)”BnmnH2 <|lzn — p”2 — lzn41 — p||2 (32)
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Summing from n=1 to N, from (4) we have

N
Z an(l = an)|| Bntal)?
n=1

N-1
< llzr =2l + D (lznsr = pl* = llznsr = 2I%) = 2w = 2l
n=1
N-1
<l =pl* + D (2041 = pll + 1201 = P I@ns1 = 2l
n=1
N-1
< e =plI* + Y~ anBall@nrs = pll + 2041 = PIDISazn — Tnenl
n=1
N-1
<o -pl>+ MY B,
n=1
where M = supcn{([n+1 =Dl + 17011~ I Sazn — Toall}. Letting N — oo,
form }~,° ; B, < 0o, we have

N N-1
> an(l— an)|Buznll? < llz1 = pl* + M Y B < co.
n=1 n=1

Since Y02, om(1 — ) = 00, from Lemma 2.1 we get
liminf || By, | = liminf ||z, — Thz,| = 0. (3.3)
n—0o n—oo
We note that
Zn+1 — Tnnal
SN Tnzng1 — Tnnll + | Tnn — Unznll + (1 — an) |Unzn — z4l|
S znt1 = znll + | Tnzn — Unzall + (1 = an)|Unzn — 24|
= (1 — an)zn + AnUnTn — Tu|| + | Tnzn — Unzal|
+ (1 = o) |Unzn — 24|
= an||Unn = Znl| + |Tnn — Unznll + (1 — o) ||Unzpn — 24|
= [|Unzn = | + I Tozn — {BnSnzn + (1 = Bn)Tnn}l]
= 1Bn(Snxn — zn) + (1 = Bn)(Tnttn — )| + Bl Tntn — Sl
< (A =Bulllzn = Tnznll + Ba(Snzn — znll + | Tun ~ Snznll)
< (L= Blllzn — Tnnll + Balllzn — Tnall + 2| Tntn — Snzall)
S lzn — Toznll + 260 Tnzn — Suznl.

Since Yo, Bn < 00, from Lemma 2.6 there exists the limit of {||z, — Thzx|}.
Therefore, form (3.3) we get

lim ||z, — Thanl = 0.
n—oo
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Now for alli=1,2,..., N, from Lemma 2.4, we have

|z, — Tntitnll < |20 — il + [1Znsi = Tng il + | TntiTnti = i Tl

<Nxn = Tptill + |Zn4i — TntiZntill + |Znts — Tl
which on taking the limit n — co yields
lim ||@n — Thtiznll =0
n—oo
foralli=1,2,...,N. Consequently, we have
lim ||z, — Tiz,|| =0
n—o

Since {z,} is bounded sequence, there exists a subsequence {zr,,} C {z,} such
that {z,,} converges weakly to p. Since a nonexpansive mapping T is demiclosed,
we have p € F». As in the proof of (i), {z,} converges weakly to p € F>.

(ili) We obtain from (1.3) that

Tri1 = Bp{(l — an)zn + anSnzn} + (1 — G ){(1 — an)zn + anThzn}

for all n € N. Further, putting W,, = 8,{(1 — an)I + anSp} + (1 — B){(1 -
an)l + a,T,}, we can rewrite (1.3) by z,41 = W,z,. We first show that {z,}
converges weakly to some point on Fy. For any p € Fy (| Fa, we have
[(1 = an)zn + anSy —p||2 =(1—an)llzn — p||2 + anl|Spzn — p||2
= an(l = ay)llz, — SnwnHQ
and hence
an(l = ap)llen = Spznl® = (J2n — Pl = (1 = an)zn + anSpzn — pll°)
— anllzn = o[> + anl|Span — plf?
< (flzn _pHZ =1 —an)an + anSpzy —p||2) (3.4)
= ap|Tn — p”2 + anllzn — p||2
= [lzs — pl|2 = I(1 ~— an)zn + anSpan — p||2

by the proof (i),(ii), we have

Wy — p|l2 < Bnll(1 = an)zn + @nSpn — pHQ
+ (L= BN = an)an + anToen — pl1?
< Ball(1 = an)zn + anSpn = pl> + (1 = B)llzn — pl®
< Bullen = pl* + (1 = Bu)llen — pi®
= llzn - plf?
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and hence
|z —pH? = Bnll(1 = an)zy + anSnzy —p”2 - (1= B)llzn -p”2
= Bn(||zn _19”2 = (1 — an)zs + 0 Spzn _Pllz)
< llzn = plI* — |Wna, — pl|?
As n — oo, We have
0 < (1= Bn)Bnlllzn — pl* - I(1 = an)zn + anSpen — pl|?)
< (1= Bn)(llzn ~ plI* ~ [Wazn — plI)
= (1= Bn)(llzn = plI* — l|Zns1 = p[*) — 0
Since liminf, . 8,(1 — 8,) > 0, we have

lim(lzn ~ pII* ~ I(1 = an)on + anSpzn —p[I?) = 0

since liminf,, o0 0n(1 — ay,) > 0, from (3.4) we get

nan;o |z — Spzn|| = 0.
since Sp(mod)n Jforalli=1,2,..., N, we have
nll)n;o |lzn — Sizn|| =0
As in the proof of (i), we obtain from Lemma (2.7) that if {z, } converges weakly

to p, then p € F;. We also show that such p is in F». In fact, we have that for
any p € Fy [ F> we have

11 = @n)n + 0T = pl2 = (1 = an)llon — Pl + enlTazn — p?
= an(l = an)lzn — Tnza?
and hence
an(l = an)llzn — Tozall = (lzn —plI* = |(1 = an)zn + anTnan — p||?)
— anllzn - p!lz + an||Tuzn — p”2
< (lzn — pI* = (1 = @)z + anTozn — plf?) (3.5)
= anllzn = pll* + anllzn — plf?
= ll&n = plI* ~ (1 ~ @)z + anTnzs — plf®
by the proof (i)-(ii), we have
”ann “p”2 < Bn”(l - O‘n)xn + anThzy — ;D”2
+ (1 =81 = an)zn + anThzn — pl|?
< Ballen = plI* + (1 = Bu)Il(1 = @n)zn + anTozn — pl?
< Brllzn = plI* + (1 = Ba)ll@n — pII?

= [lzn —pl?
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and hence
lzn = 2l* = Ball(1 = @n)en + anTngn — plI* — (1 = Ba)ll2n — p|I?
= Bullzn — 2l = (1 = an)zn + anTnan — pl)
< llzn ~ pl* = [Wazs - pl|®
As n — oo, We have
0< (1= Bn)Bnlllzn — pII* = (1 ~ an)en + anTuzn — plI?)
< (1= Ba)(lzn = pl* = |Wazn — plI*)
= (1= Ba)(llzn — plI* = [|2n+1 = p[*) = 0
Since lim inf, . 8,(1 — 8,) > 0, we have
lim([lzn = pl* = (1 = @n)zn + anTazn —pl?) = 0

since lim inf, .00 an(1 — @y,) > 0, from (3.5) we get

lim ||z, — Thz,| = 0.
n—00
Further since T, (moqyn Jforalli =1,2,..., N, we have

lim |z, — Tizn|| =0

n—oo

Since {z,} converges weakly to p, then p € F». Let {zn;} be another subse-
quence of {z,} such that {z,,} — v. Then we have p = v. In fact, ifp # v,then
we have that

lim [z, —pl| = lim ||z, - pl| < lim [z, — o]
n—oo 1—00 100
= lim ||z, —v| = lim [j2,, — v
n—o0 J—0o0
< lim |z, —p|| = lim ||z, — pl|
j—ro0 n—oo
This is a contradiction. So, we have p = v. Therefore we conclude that {z,}
converges weakly to p € Fy () Fs.
Put 3 =1 and 3 = 0, we get the following Corollary form Theorem 3.1.

Corollary 3.1. Let H be a Hilbert space and C be a nonempty closed convex
subset of H. Let S; : C — C fori = 1,2,...,N be a family of spreading
mappings of C into itself such that F1 # 0. For arbitrary z, € C, defined a
sequence {z,} as following
Tnt1 = (1 —ap)z, + apnSpzy,

where S, = S,(modny and the mod function takes values in 1,2...,N, a, C
[0,1]. If liminf, o an(l — @) > 0, then {z,} converges weakly to p € F}.
Proof. Putting 8, =1 for all n € N in Theorem 3.1 ,we get the conclusion.

Corollary 3.2. Let H be a Hilbert space and C be a nonempty closed convex
subset of H. Let F; : C — C fori =1,2,...,N be a family of nonexpansive
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mappings of C into itself such that Fo # §. For arbitrary z, € C, defined a
sequence {x,} as following

Tnt1 = (1 —an)zpn + anTha,

where Ty, = Tr(moany and the mod function takes values in 1,2... ,N, a, C
(0,1]. If 07 an(l — o) = oo, then {x,} converges weakly to p € Fs.

Proof. Putting 3, =0 for all n € N in Theorem 3.1 ,we get the conclusion.
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