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EXISTENCE OF POSITIVE SOLUTIONS FOR FRACTIONAL

DIFFERENTIAL EQUATIONS WITH A SINGULAR WEIGHT

Jeongmi Jeong and Yong-Hoon Lee∗

Abstract. In this work, we study the existence of a positive solution

for nonlinear fractional differential equation with a singular weight. For

the proof, we introduce newly defined solution operator and use well-
known Krasnoselski’s fixed point theorem. We also give an example with

a singular weight which may not be integrable.

1. Introduction

In this paper, we study the existence and multiplicity of positive solutions to
the following boundary value problem{

Dα
0+u(t) + h(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = 0 = u(1),
(FDE)

where Dα
0+ is the Riemann-Liouville fractional derivative of order α ∈ (1, 2],

f ∈ C([0,∞), [0,∞)) and h ∈ C([0, 1), [0,∞)).
Throughout this paper, we assume the following hypotheses, unless otherwise

stated.

(H1) h ∈ Aα, where

Aα := {k ∈ C([0, 1), [0,∞)) :
∫ 1

0
(1− s)α−1k(s)ds < ∞}.

(H2) For some n ∈ N, there exist hi ∈ Bα and gi ∈ C([0,∞), [0,∞)) (i =
1, 2, · · ·n) such that

h(t)f(tα−2y) =

n∑
i=1

hi(t)gi(y) for t ∈ (0, 1) and y ∈ [0,∞),

where
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Bα :=
{
k ∈ C((0, 1), [0,∞)) :

∫ 1

0
sα−1(1− s)α−1k(s)ds < ∞

and k ̸≡ 0 on some compact subinterval of
[
1
4 ,

3
4

] }
.

Note that (H2) implies the following assumption

(H2)
′ there exist h, h ∈ Bα and g ∈ C([0,∞), [0,∞)) such that

h(t)g(y) ≤ h(t)f(tα−2y) ≤ h(t)g(y) for t ∈ (0, 1) and y ∈ [0,∞).

Indeed, if we assume that (H2) is satisfied, then (H2)
′ is satisfied with

h := min
1≤i≤n

hi, h := max
1≤i≤n

hi and g :=
∑

1≤i≤n

gi.

Let

G(t, s) :=


(t(1− s))α−1 − (t− s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

(t(1− s))α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1

(1)

be the Green’s function for the boundary value problem Dα
0+u = 0 and u(0) =

u(1) = 0. Here Γ is the gamma function.

2. Preliminaries

In this section, we introduce some definitions of fractional calculus and some
important lemmas, and a theorem that will be used later.

Definition 1. ([3]) For α > 0, the integral

Iα0+v(t) =
1

Γ(α)

∫ t

0

v(τ)

(t− τ)1−α
dτ , t > 0

is called the Riemann-Liouville fractional integral of order α.

Definition 2. ([3]) For α > 0, the expression

Dα
0+v(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− τ)−α+n−1v(τ)dτ

is called the Riemann-Liouville fractional derivative of order α. Here n = [α]+1
and [α] denotes the integer part of number of α.

By Lemma 2.2 in [3], we have the following lemma

Lemma 2.1. Let a > 0 and α ∈ (1, 2] be given. Assume that v ∈ C(0, a) ∩
L1(0, a) and Dα

0+v ∈ C(0, a) ∩ L1(0, a). Then there exist c1, c2 ∈ R such that

Iα0+D
α
0+v(t) = v(t) + c1t

α−1 + c2t
α−2 for t ∈ (0, a).

Remark 1. It is well known that G(t, s) ∈ C([0, 1]× [0, 1]) and

0 < G(t, s) ≤ max
0≤τ≤1

G(τ, s) = G(s, s) =
1

Γ(α)
sα−1(1− s)α−1 for t, s ∈ (0, 1).
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For k ∈ Aα, consider the following equation

{
Dα

0+u(t) + k(t) = 0, t ∈ (0, 1),

u(0) = 0 = u(1).
(FDE1)

Lemma 2.2. Assume k ∈ Aα with α ∈ (1, 2]. Then u is a solution to the

problem (FDE1) if and only if u(t) =
∫ 1

0
G(t, s)k(s)ds for t ∈ [0, 1].

Proof. Let k ∈ Aα with α ∈ (1, 2] be given. First we prove that the problem
(FDE1) has at most one solution. Assume that there exists u1 and u2 are
solutions to the problem (FDE1). Then Dα

0+(u1(t) − u2(t)) = 0 for t ∈ (0, 1).
By Lemma 2.1, there exist c1, c2 ∈ R such that u2(t)− u1(t) = c1t

α−1 + c2t
α−2

for t ∈ (0, 1). By the boundary conditions in (FDE1), c1 = c2 = 0, and thus
the problem (FDE1) has at most one solution.

Now we prove that u(t) =
∫ 1

0
G(t, s)k(s)ds is a solution of the problem

(FDE1). Let u(t) =
∫ 1

0
G(t, s)k(s)ds for t ∈ [0, 1]. Since |G(t, s)k(s)| ≤

1
Γ(α) (1 − s)α−1k(s) ∈ L1(0, 1), by Lebesgue dominated convergence theorem,

u ∈ C[0, 1] and u(0) = u(1) = 0. Next we show that u satisfies Dα
0+u(t) = −k(t)

for t ∈ (0, 1). Note that Dα
0+u(t) =

d2

dt2 I
2−α
0+ u(t) for t ∈ (0, 1) and

I2−α
0+ u(t) =

1

Γ(2− α)

(∫ t

0

(t− s)1−αu(s)ds

)
for t ∈ (0, 1).

Let t ∈ (0, 1) be given. Then

∫ t

0

(t− s)1−αu(s)ds =

∫ t

0

(t− s)1−α

∫ 1

0

G(s, τ)k(τ)dτds

=
1

Γ(α)

(∫ t

0

∫ s

0

(t− s)1−α[(s(1− τ))α−1 − (s− τ)α−1]k(τ)dτds

+

∫ t

0

∫ 1

s

(t− s)1−α(s(1− τ))α−1k(τ)dτds
)

=
1

Γ(α)

(∫ t

0

∫ t

τ

(t− s)1−α[(s(1− τ))α−1 − (s− τ)α−1]k(τ)dsdτ

+

∫ t

0

∫ τ

0

(t− s)1−α(s(1− τ))α−1k(τ)dsdτ

+

∫ 1

t

∫ t

0

(t− s)1−α(s(1− τ))α−1k(τ)dsdτ
)
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=
1

Γ(α)

(∫ t

0

∫ t

0

(t− s)1−αsα−1(1− τ)α−1k(τ)dsdτ

−
∫ t

0

∫ t

τ

(t− s)1−α(s− τ)α−1k(τ)dsdτ

+

∫ 1

t

∫ t

0

(t− s)1−αsα−1(1− τ)α−1k(τ)dsdτ
)

=
1

Γ(α)

(∫ t

0

∫ t

0

(1− s

t
)1−α(

s

t
)α−1(1− τ)α−1k(τ)dsdτ

−
∫ t

0

∫ t

τ

(1− s− τ

t− τ
)1−α(

s− τ

t− τ
)α−1k(τ)dsdτ

+

∫ 1

t

∫ t

0

(1− s

t
)1−α(

s

t
)α−1(1− τ)α−1k(τ)dsdτ

)
=

1

Γ(α)

(∫ t

0

∫ 1

0

(1− θ)1−αθα−1(1− τ)α−1k(τ)tdθdτ

−
∫ t

0

∫ 1

0

(1− θ)1−αθα−1k(τ)(t− τ)dθdτ

+

∫ 1

t

∫ 1

0

(1− θ)1−αθα−1(1− τ)α−1k(τ)tdθdτ
)
.

Since
∫ 1

0
θx1−1(1− θ)x2−1dθ = Γ(x1)Γ(x2)

Γ(x1+x2)
for positive constants x1, x2,∫ 1

0
(1− θ)1−αθα−1dθ = Γ(2− α)Γ(α).

Thus we get

I2−α
0+ u(t) =

1

Γ(2− α)

∫ t

0

(t− s)1−αu(s)ds

=
(
t

∫ t

0

(1− τ)α−1k(τ)dτ −
∫ t

0

(t− τ)k(τ)dτ + t

∫ 1

t

(1− τ)α−1k(τ)dτ
)

=
(
t

∫ 1

0

(1− τ)α−1k(τ)dτ −
∫ t

0

(t− τ)k(τ)dτ
)
for t ∈ (0, 1),

which implies

Dα
0+u(t) =

d2

dt2
I2−α
0+ u(t)

=
d2

dt2

(
t

∫ 1

0

(1− τ)α−1k(τ)dτ −
∫ t

0

(t− τ)k(τ)dτ
)

=
d

dt

(∫ 1

0

(1− τ)α−1k(τ)dτ −
∫ t

0

k(τ)dτ

)
= −k(t) for t ∈ (0, 1),
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and this completes the proof. □

Lemma 2.3. ([1, Theorem 2]) For α ∈ (1, 2], the continuous function G∗(t, s) :=
t2−αG(t, s) has the following properties:

α− 1

Γ(α)
t(1− t)s(1− s)α−1 ≤ G∗(t, s) ≤ 1

Γ(α)
s(1− s)α−1 for t, s ∈ [0, 1].

Let K := {u ∈ C[0, 1] : u(t) ≥ (α−1)t(1−t)∥u∥∞ for t ∈ [0, 1]}. Here, ∥·∥∞ is
the usual maximum norm in the Banach space C[0, 1], i.e., ∥u∥∞ := max

t∈[0,1]
|u(t)|

for u ∈ C[0, 1]. Then K is a cone in C[0, 1].
Define T : K → C[0, 1] by, for y ∈ K and t ∈ [0, 1],

Ty(t) :=
∫ 1

0
G∗(t, s)h(s)f(sα−2y(s))ds.

Then T is well defined. Indeed, for y ∈ K and t ∈ [0, 1], by Lemma 2.3 and
(H2)

′, we get

0 ≤ G∗(t, s)h(s)f(sα−2y(s)) ≤ ∥g(y)∥∞
Γ(α)

sα−1(1− s)α−1h(s) ∈ L1(0, 1).

Thus, by Lebesgue Dominated Convergence Theorem, Ty ∈ C[0, 1] for all y ∈ K
and T is well defined.

Lemma 2.4. Assume that (H2) is satisfied. Then T : K → K is completely
continuous.

Proof. First, we show that T : K → K. Let y ∈ K. By Lemma 2.3,

Ty(t) ≥ α− 1

Γ(α)
t(1− t)

∫ 1

0

s(1− s)α−1h(s)f(sα−2y(s))ds for t ∈ [0, 1]

and

∥Ty∥∞ ≤ 1

Γ(α)

∫ 1

0

s(1− s)α−1h(s)f(sα−2y(s))ds.

Consequently, Ty(t) ≥ (α− 1)t(1− t)∥Ty∥∞ for t ∈ [0, 1] and Ty ∈ K.
Next, we show that T is continuous. Let yn → y in K as n → ∞ and ϵ > 0 be

given. Then there exists M > 0 such that ∥yn∥∞ < M for all n and ∥y∥∞ < M .
Since gi is uniformly continuous on [0,M ] for i = 1, 2, · · · , n, there exists δ > 0

such that if z1, z2 ∈ [0,M ] and |z1 − z2| < δ, then |gi(z1) − gi(z2)| < Γ(α)ϵ
nCi

for

any i = 1, 2, · · · , n. Here, Ci =
∫ 1

0
s(1 − s)α−1hi(s)ds > 0 for i = 1, 2, · · · , n.

Since yn → y in K as n → ∞, there exists N ∈ N such that ∥yn − y∥∞ < δ for
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all n ≥ N. By (H2) and Lemma 2.3, for n ≥ N and t ∈ [0, 1],

|Tyn(t)− Ty(t)| ≤
∫ 1

0

G∗(t, s)h(s)|f(sα−2yn(s))− f(sα−2y(s))|ds

=

∫ 1

0

G∗(t, s)

n∑
i=1

hi(s)|gi(yn(s))− gi(y(s))|ds

≤ 1

Γ(α)

n∑
i=1

∫ 1

0

s(1− s)α−1hi(s)|gi(yn(s))− gi(y(s))|ds

≤ 1

Γ(α)

n∑
i=1

Ci
Γ(α)ϵ

nCi
= ϵ.

Consequently, Tyn → Ty in K as n → ∞.
Finally, we show that T is compact. Let D be a bounded set in K, i.e., there

exists L > 0 such that ∥y∥∞ ≤ L for any y ∈ D. For y ∈ D and t ∈ [0, 1], by
(H2) and Lemma 2.3,

|Ty(t)| ≤ 1

Γ(α)

∫ 1

0

s(1− s)α−1
n∑

i=1

hi(s)gi(y(s))

≤ 1

Γ(α)

n∑
i=1

Mi

∫ 1

0

s(1− s)α−1hi(s)ds < ∞,

where Mi := max
0≤z≤L

|gi(z)| for i = 1, 2, · · · , n. Thus T (D) is bounded.

Let t1, t2 ∈ [0, 1] be given. By Lemma 2.3, for s ∈ [0, 1],

G∗(t2, s)−G∗(t1, s) ≤ 1

Γ(α)
s(1− s)α−1 − α− 1

Γ(α)
t1(1− t1)s(1− s)α−1

=
1

Γ(α)
s(1− s)α−1(1− (α− 1)t1(1− t1))

≤ s(1− s)α−1

Γ(α)
≤ sα−1(1− s)α−1

Γ(α)
.

Similarly, it can be shown that G∗(t1, s)−G∗(t2, s) ≤ sα−1(1−s)α−1

Γ(α) for s ∈ [0, 1].

Thus,

|G∗(t1, s)−G∗(t2, s)| ≤
1

Γ(α)
sα−1(1− s)α−1 for s ∈ [0, 1]. (2)

By (H2), there exists δ1 > 0 such that

1

Γ(α)

n∑
i=1

Mi

∫ δ1

0

sα−1(1− s)α−1hi(s)ds <
ϵ

3
(3)

and
1

Γ(α)

n∑
i=1

Mi

∫ 1

1−δ1

sα−1(1− s)α−1hi(s)ds <
ϵ

3
. (4)
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Since G∗(t, s) is uniformly continuous, there exists δ > 0 such that

if |t2− t1| < δ, then |G∗(t1, s)−G∗(t2, s)| <
ϵ

3
∑n

i=1 MiĈi

for all s ∈ [0, 1]. (5)

Here Ĉi = max
δ1≤s≤1−δ1

hi(s) for i = 1, 2, · · · , n. Let t1 and t2 be given with

|t1 − t2| < δ and y ∈ D. Then, by (2), (3), (4) and (5),

|Ty(t1)− Ty(t2)| =

∣∣∣∣∫ 1

0

(G∗(t1, s)−G∗(t2, s))h(s)f(s
α−2y(s))ds

∣∣∣∣
≤

∫ 1

0

|G∗(t1, s)−G∗(t2, s)|
n∑

i=1

hi(s)gi(y(s))ds

≤
n∑

i=1

Mi

∫ δ1

0

|G∗(t1, s)−G∗(t2, s)|hi(s)ds

+

n∑
i=1

Mi

∫ 1

1−δ1

|G∗(t1, s)−G∗(t2, s)|hi(s)ds

+

n∑
i=1

MiĈi

∫ 1−δ1

δ1

|G∗(t1, s)−G∗(t2, s)|ds

≤ 1

Γ(α)

n∑
i=1

Mi

∫ δ1

0

sα−1(1− s)α−1hi(s)ds

+
1

Γ(α)

n∑
i=1

Mi

∫ 1

1−δ1

sα−1(1− s)α−1hi(s)ds

+

n∑
i=1

MiĈi
ϵ

3
∑n

i=1 MiCi
<

ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ,

which implies TD is equicontinuous. Thus, by Arzelà-Ascoli theorem, T is
compact. □

Lemma 2.5. Assume that (H1) and (H2) are satisfied. If y is a fixed point
of T , then u is a solution to the problem (FDE). Here u(t) := tα−2y(t) for
t ∈ (0, 1] and u(0) := 0.

Proof. Let y be a fixed point of T . Then

y(t) = Ty(t) = t2−α
∫ 1

0
G(t, s)h(s)f(sα−2y(s))ds for t ∈ [0, 1].

For α = 2, by Lemma 2.2, the proof is clear. Let α ∈ (1, 2) be given and let

u(t) :=

{
tα−2y(t), for t ∈ (0, 1],
0, for t = 0.

Then u(t) = tα−2y(t) =
∫ 1

0
G(t, s)h(s)f(u(s))ds for t ∈ (0, 1]. From the facts

that u(0) = 0 and G(0, s) = 0 for all s ∈ [0, 1], it follows that
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u(t) =
∫ 1

0
G(t, s)h(s)f(u(s))ds for t ∈ [0, 1].

By (H2)
′ and Lebesgue’s dominated convergence theorem,

0 ≤ lim
t→0+

u(t) = lim
t→0+

∫ 1

0

G(t, s)h(s)f(sα−2y(s))ds

≤ ∥g(y)∥∞ lim
t→0+

∫ 1

0

G(t, s)h(s)ds = 0,

which implies that u ∈ C[0, 1]. Since h(·)f(u(·)) ∈ Aα, by Lemma 2.2, we can
conclude that u is a solution to the problem (FDE). □

Theorem 2.6. ([2]) Let E be a Banach space and let K be a cone in E. Assume
that Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2. Assume that
T : K ∩ (Ω2 \ Ω1) → K is completely continuous such that either

(1) ∥Tu∥ ≤ ∥u∥ for u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≥ ∥u∥ for u ∈ K ∩ ∂Ω2, or
(2) ∥Tu∥ ≥ ∥u∥ for u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≤ ∥u∥ for u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \ Ω1).

3. Main results

For convenience, we introduce the following notations

g0 = lim
s→0

g(s)

s
and g∞ = lim

s→∞

g(s)

s
,

where g is the function in the assumption (H2)
′.

Theorem 3.1. Assume that (H1) and (H2) are satisfied.

(1) If g0 = 0 and g∞ = ∞, then the problem (FDE) has a positive solution.
(2) If g0 = ∞ and g∞ = 0, then the problem (FDE) has a positive solution.

Proof. (1) Let ϵ := Γ(α)

(∫ 1

0

s(1− s)α−1h̄(s)ds

)−1

> 0. By g0 = 0, we may

choose r > 0 satisfying

g(z) ≤ εz for all z ∈ [0, r]. (6)

Let Br = {y ∈ C[0, 1] : ∥y∥∞ < r}. From Lemma 2.3 and (6), it follows
that for y ∈ K ∩ ∂Br and t ∈ [0, 1],

Ty(t) =

∫ 1

0

G∗(t, s)h(s)f(sα−2y(s))ds

≤ 1

Γ(α)

∫ 1

0

s(1− s)α−1h(s)g(y(s))ds

≤ ϵ

Γ(α)

∫ 1

0

s(1− s)α−1h(s)ds∥y∥∞.

Therefore, by the choice of ϵ, ∥Ty∥∞ ≤ ∥y∥∞ for all y ∈ K ∩ ∂Br.
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Let

ρ :=
64Γ(α)

(α− 1)2

(∫ 3
4

1
4

s(1− s)α−1h(s)ds

)−1

.

Since g∞ = ∞, there exists M > 0 such that g(v) ≥ ρv for v ≥ M . Take
R > max{ 16

α−1M, r} and BR = {y ∈ C[0, 1] : ∥y∥∞ < R}. For y ∈ K ∩ ∂BR,

y(t) ≥ α− 1

16
∥y∥∞ > M for t ∈ [ 14 ,

3
4 ].

Consequently,

g(y(t)) ≥ ρy(t) for y ∈ K ∩ ∂BR and t ∈
[
1

4
,
3

4

]
. (7)

By Lemma 2.3 and (7),

∥Ty∥∞ ≥ Ty

(
1

2

)
=

∫ 1

0

G∗
(
1

2
, s

)
h(s)f(sα−2y(s))ds

≥ α− 1

4Γ(α)

∫ 3
4

1
4

s(1− s)α−1h(s)g(y(s))ds

≥ ρ(α− 1)

4Γ(α)

∫ 3
4

1
4

s(1− s)α−1h(s)y(s)ds

≥ ρ(α− 1)2

64Γ(α)

∫ 3
4

1
4

s(1− s)α−1h(s)ds∥y∥∞.

Therefore, by the choice of ρ, ∥Ty∥∞ ≥ ∥y∥∞ for all y ∈ K∩∂BR. By Theorem
2.6, T has a fixed point y in K∩ (BR \Br). Consequently, the problem (FDE)
has a positive solution u in view of Lemma 2.5.

(2) Let

L =
16

α− 1

(∫ 3
4

1
4

G∗
(
1

2
, s

)
h(s)ds

)−1

.
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By g0 = ∞, we may choose r1 so that g(z) ≥ Lz for 0 < z ≤ r1. Let Br1 =
{y ∈ C[0, 1] : ||y||∞ < r1}. For y ∈ K ∩ ∂Br1 ,

||Ty||∞ ≥ Ty

(
1

2

)
=

∫ 1

0

G∗
(
1

2
, s

)
h(s)f(sα−2y(s))ds

≥
∫ 3

4

1
4

G∗
(
1

2
, s

)
h(s)g(y(s))ds

≥ L

∫ 3
4

1
4

G∗
(
1

2
, s

)
h(s)y(s)ds

≥ L(α− 1)

16

∫ 3
4

1
4

G∗
(
1

2
, s

)
h(s)ds||y||∞.

Therefore, by the choice of L, ∥Ty∥∞ ≥ ∥y∥∞ for all y ∈ K ∩ ∂Br1 .
Let ζ > 0 be a constant satisfying

Γ(α)− ζ

∫ 1

0

s(1− s)α−1h(s)ds > 0.

Since g∞ = 0, there exists L1 > 0 such that g(z) ≤ ζz for z > L1. Choose
R1(> r1) satisfying

R1 > max

L1,

max
0≤z≤L1

|g(z)|
∫ 1

0

s(1− s)α−1h(s)ds

Γ(α)− ζ
∫ 1

0
s(1− s)α−1h(s)ds


and let BR1

= {y ∈ C[0, 1] : ||y||∞ < R1}. By Lemma 2.2 and (H2)
′, for

y ∈ K ∩ ∂BR1
and t ∈ [0, 1],

Ty(t) =

∫ 1

0

G∗(t, s)h(s)f(sα−2y(s))ds

≤ 1

Γ(α)

∫ 1

0

s(1− s)α−1h(s)g(y(s))ds

=
1

Γ(α)

[ ∫
A1

s(1− s)α−1h(s)g(y(s))ds+

∫
A2

s(1− s)α−1h(s)g(y(s))ds
]

≤ 1

Γ(α)

[
max

0≤z≤L1

|g(z)|
∫
A1

s(1− s)α−1h(s)ds+ ζ

∫
A2

s(1− s)α−1h(s)y(s)ds

]
≤ 1

Γ(α)

(
max

0≤z≤L1

|g(z)|+ ζR1

)∫ 1

0

s(1− s)α−1h(s)ds

≤ R1 = ||y||∞.

Here A1 = {s : 0 ≤ y(s) ≤ L1} and A2 = {s : L1 ≤ y(s) ≤ R1}. Thus
||Ty||∞ ≤ ||y||∞ for y ∈ K ∩ ∂BR1 . By Theorem 2.6, T has a fixed point y in
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K ∩ (BR1 \ Br1). Consequently, the problem (FDE) has a positive solution u
in view of Lemma 2.5.

□

Example 3.2. Let α ∈ (1, 2] be given and h(t) = (1− t)−q with q < α. Then
h ∈ Aα, i.e., (H1) is satisfied. Let f(u) = ua with a ∈ (0, α∗). Here, α∗ = α

2−α

for α ∈ (1, 2) and α∗ = ∞ for α = 2. Then h(t)f(tα−2y) = ta(α−2)(1 − t)−qya

and (H2) is satisfied with n = 1, h1(t) = ta(α−2)(1− t)−q ∈ Bα and g1(y) = ya.
(i) If a ∈ (0, 1), then (g1)0 = ∞ and (g1)∞ = 0.
(ii) If a ∈ (1, α∗), then (g1)0 = 0 and (g1)∞ = ∞.
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