East Asian Math. J.
Vol. 40 (2024), No. 1, pp. 051-061
YNMS
http://dx.doi.org/10.7858/eamj.2024.004

EXISTENCE OF POSITIVE SOLUTIONS FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH A SINGULAR WEIGHT

Jeongmi Jeong and Yong-Hoon Lee*

Abstract

In this work, we study the existence of a positive solution for nonlinear fractional differential equation with a singular weight. For the proof, we introduce newly defined solution operator and use wellknown Krasnoselski's fixed point theorem. We also give an example with a singular weight which may not be integrable.

1. Introduction

In this paper, we study the existence and multiplicity of positive solutions to the following boundary value problem

$$
\left\{\begin{array}{l}
D_{0+}^{\alpha} u(t)+h(t) f(u(t))=0, \quad t \in(0,1) \tag{FDE}\\
u(0)=0=u(1)
\end{array}\right.
$$

where D_{0+}^{α} is the Riemann-Liouville fractional derivative of order $\alpha \in(1,2]$, $f \in C([0, \infty),[0, \infty))$ and $h \in C([0,1),[0, \infty))$.

Throughout this paper, we assume the following hypotheses, unless otherwise stated.
$\left(H_{1}\right) h \in \mathcal{A}_{\alpha}$, where

$$
\mathcal{A}_{\alpha}:=\left\{k \in C([0,1),[0, \infty)): \int_{0}^{1}(1-s)^{\alpha-1} k(s) d s<\infty\right\} .
$$

$\left(H_{2}\right)$ For some $n \in \mathbb{N}$, there exist $h_{i} \in \mathcal{B}_{\alpha}$ and $g_{i} \in C([0, \infty),[0, \infty))(i=$ $1,2, \cdots n$) such that

$$
h(t) f\left(t^{\alpha-2} y\right)=\sum_{i=1}^{n} h_{i}(t) g_{i}(y) \text { for } t \in(0,1) \text { and } y \in[0, \infty),
$$

where

[^0]\[

$$
\begin{aligned}
& \mathcal{B}_{\alpha}:=\left\{k \in C((0,1),[0, \infty)): \int_{0}^{1} s^{\alpha-1}(1-s)^{\alpha-1} k(s) d s<\infty\right. \\
&\text { and } \left.k \not \equiv 0 \text { on some compact subinterval of }\left[\frac{1}{4}, \frac{3}{4}\right]\right\} .
\end{aligned}
$$
\]

Note that $\left(H_{2}\right)$ implies the following assumption $\left(H_{2}\right)^{\prime}$ there exist $\underline{h}, \bar{h} \in \mathcal{B}_{\alpha}$ and $g \in C([0, \infty),[0, \infty))$ such that

$$
\underline{h}(t) g(y) \leq h(t) f\left(t^{\alpha-2} y\right) \leq \bar{h}(t) g(y) \text { for } t \in(0,1) \text { and } y \in[0, \infty) .
$$

Indeed, if we assume that $\left(H_{2}\right)$ is satisfied, then $\left(H_{2}\right)^{\prime}$ is satisfied with

$$
\underline{h}:=\min _{1 \leq i \leq n} h_{i}, \bar{h}:=\max _{1 \leq i \leq n} h_{i} \text { and } g:=\sum_{1 \leq i \leq n} g_{i} .
$$

Let

$$
G(t, s):= \begin{cases}\frac{(t(1-s))^{\alpha-1}-(t-s)^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq s \leq t \leq 1 \tag{1}\\ \frac{(t(1-s))^{\alpha-1}}{\Gamma(\alpha)}, & 0 \leq t \leq s \leq 1\end{cases}
$$

be the Green's function for the boundary value problem $D_{0+}^{\alpha} u=0$ and $u(0)=$ $u(1)=0$. Here Γ is the gamma function.

2. Preliminaries

In this section, we introduce some definitions of fractional calculus and some important lemmas, and a theorem that will be used later.

Definition 1. ([3]) For $\alpha>0$, the integral

$$
I_{0+}^{\alpha} v(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{v(\tau)}{(t-\tau)^{1-\alpha}} d \tau, t>0
$$

is called the Riemann-Liouville fractional integral of order α.
Definition 2. ([3]) For $\alpha>0$, the expression

$$
D_{0+}^{\alpha} v(t)=\frac{1}{\Gamma(n-\alpha)}\left(\frac{d}{d t}\right)^{n} \int_{0}^{t}(t-\tau)^{-\alpha+n-1} v(\tau) d \tau
$$

is called the Riemann-Liouville fractional derivative of order α. Here $n=[\alpha]+1$ and $[\alpha]$ denotes the integer part of number of α.

By Lemma 2.2 in [3], we have the following lemma
Lemma 2.1. Let $a>0$ and $\alpha \in(1,2]$ be given. Assume that $v \in C(0, a) \cap$ $L^{1}(0, a)$ and $D_{0+}^{\alpha} v \in C(0, a) \cap L^{1}(0, a)$. Then there exist $c_{1}, c_{2} \in \mathbb{R}$ such that

$$
I_{0+}^{\alpha} D_{0+}^{\alpha} v(t)=v(t)+c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2} \text { for } t \in(0, a)
$$

Remark 1. It is well known that $G(t, s) \in C([0,1] \times[0,1])$ and

$$
0<G(t, s) \leq \max _{0 \leq \tau \leq 1} G(\tau, s)=G(s, s)=\frac{1}{\Gamma(\alpha)} s^{\alpha-1}(1-s)^{\alpha-1} \text { for } t, s \in(0,1)
$$

For $k \in \mathcal{A}_{\alpha}$, consider the following equation

$$
\left\{\begin{array}{l}
D_{0+}^{\alpha} u(t)+k(t)=0, \quad t \in(0,1) \\
u(0)=0=u(1)
\end{array}\right.
$$

$\left(F D E_{1}\right)$

Lemma 2.2. Assume $k \in \mathcal{A}_{\alpha}$ with $\alpha \in(1,2]$. Then u is a solution to the problem $\left(F D E_{1}\right)$ if and only if $u(t)=\int_{0}^{1} G(t, s) k(s) d s$ for $t \in[0,1]$.

Proof. Let $k \in \mathcal{A}_{\alpha}$ with $\alpha \in(1,2]$ be given. First we prove that the problem $\left(F D E_{1}\right)$ has at most one solution. Assume that there exists u_{1} and u_{2} are solutions to the problem $\left(F D E_{1}\right)$. Then $D_{0+}^{\alpha}\left(u_{1}(t)-u_{2}(t)\right)=0$ for $t \in(0,1)$. By Lemma 2.1, there exist $c_{1}, c_{2} \in \mathbb{R}$ such that $u_{2}(t)-u_{1}(t)=c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}$ for $t \in(0,1)$. By the boundary conditions in $\left(F D E_{1}\right), c_{1}=c_{2}=0$, and thus the problem $\left(F D E_{1}\right)$ has at most one solution.

Now we prove that $u(t)=\int_{0}^{1} G(t, s) k(s) d s$ is a solution of the problem $\left(F D E_{1}\right)$. Let $u(t)=\int_{0}^{1} G(t, s) k(s) d s$ for $t \in[0,1]$. Since $|G(t, s) k(s)| \leq$ $\frac{1}{\Gamma(\alpha)}(1-s)^{\alpha-1} k(s) \in L^{1}(0,1)$, by Lebesgue dominated convergence theorem, $u \in C[0,1]$ and $u(0)=u(1)=0$. Next we show that u satisfies $D_{0+}^{\alpha} u(t)=-k(t)$ for $t \in(0,1)$. Note that $D_{0+}^{\alpha} u(t)=\frac{d^{2}}{d t^{2}} I_{0+}^{2-\alpha} u(t)$ for $t \in(0,1)$ and

$$
I_{0+}^{2-\alpha} u(t)=\frac{1}{\Gamma(2-\alpha)}\left(\int_{0}^{t}(t-s)^{1-\alpha} u(s) d s\right) \quad \text { for } t \in(0,1)
$$

Let $t \in(0,1)$ be given. Then

$$
\begin{aligned}
& \int_{0}^{t}(t-s)^{1-\alpha} u(s) d s=\int_{0}^{t}(t-s)^{1-\alpha} \int_{0}^{1} G(s, \tau) k(\tau) d \tau d s \\
= & \frac{1}{\Gamma(\alpha)}\left(\int_{0}^{t} \int_{0}^{s}(t-s)^{1-\alpha}\left[(s(1-\tau))^{\alpha-1}-(s-\tau)^{\alpha-1}\right] k(\tau) d \tau d s\right. \\
& \left.+\int_{0}^{t} \int_{s}^{1}(t-s)^{1-\alpha}(s(1-\tau))^{\alpha-1} k(\tau) d \tau d s\right) \\
= & \frac{1}{\Gamma(\alpha)}\left(\int_{0}^{t} \int_{\tau}^{t}(t-s)^{1-\alpha}\left[(s(1-\tau))^{\alpha-1}-(s-\tau)^{\alpha-1}\right] k(\tau) d s d \tau\right. \\
& +\int_{0}^{t} \int_{0}^{\tau}(t-s)^{1-\alpha}(s(1-\tau))^{\alpha-1} k(\tau) d s d \tau \\
& \left.+\int_{t}^{1} \int_{0}^{t}(t-s)^{1-\alpha}(s(1-\tau))^{\alpha-1} k(\tau) d s d \tau\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{\Gamma(\alpha)}\left(\int_{0}^{t} \int_{0}^{t}(t-s)^{1-\alpha} s^{\alpha-1}(1-\tau)^{\alpha-1} k(\tau) d s d \tau\right. \\
& -\int_{0}^{t} \int_{\tau}^{t}(t-s)^{1-\alpha}(s-\tau)^{\alpha-1} k(\tau) d s d \tau \\
& \left.+\int_{t}^{1} \int_{0}^{t}(t-s)^{1-\alpha} s^{\alpha-1}(1-\tau)^{\alpha-1} k(\tau) d s d \tau\right) \\
= & \frac{1}{\Gamma(\alpha)}\left(\int_{0}^{t} \int_{0}^{t}\left(1-\frac{s}{t}\right)^{1-\alpha}\left(\frac{s}{t}\right)^{\alpha-1}(1-\tau)^{\alpha-1} k(\tau) d s d \tau\right. \\
& -\int_{0}^{t} \int_{\tau}^{t}\left(1-\frac{s-\tau}{t-\tau}\right)^{1-\alpha}\left(\frac{s-\tau}{t-\tau}\right)^{\alpha-1} k(\tau) d s d \tau \\
& \left.+\int_{t}^{1} \int_{0}^{t}\left(1-\frac{s}{t}\right)^{1-\alpha}\left(\frac{s}{t}\right)^{\alpha-1}(1-\tau)^{\alpha-1} k(\tau) d s d \tau\right) \\
= & \frac{1}{\Gamma(\alpha)}\left(\int_{0}^{t} \int_{0}^{1}(1-\theta)^{1-\alpha} \theta^{\alpha-1}(1-\tau)^{\alpha-1} k(\tau) t d \theta d \tau\right. \\
& -\int_{0}^{t} \int_{0}^{1}(1-\theta)^{1-\alpha} \theta^{\alpha-1} k(\tau)(t-\tau) d \theta d \tau \\
& \left.+\int_{t}^{1} \int_{0}^{1}(1-\theta)^{1-\alpha} \theta^{\alpha-1}(1-\tau)^{\alpha-1} k(\tau) t d \theta d \tau\right) .
\end{aligned}
$$

Since $\int_{0}^{1} \theta^{x_{1}-1}(1-\theta)^{x_{2}-1} d \theta=\frac{\Gamma\left(x_{1}\right) \Gamma\left(x_{2}\right)}{\Gamma\left(x_{1}+x_{2}\right)}$ for positive constants x_{1}, x_{2},

$$
\int_{0}^{1}(1-\theta)^{1-\alpha} \theta^{\alpha-1} d \theta=\Gamma(2-\alpha) \Gamma(\alpha)
$$

Thus we get

$$
\begin{aligned}
& I_{0+}^{2-\alpha} u(t)=\frac{1}{\Gamma(2-\alpha)} \int_{0}^{t}(t-s)^{1-\alpha} u(s) d s \\
= & \left(t \int_{0}^{t}(1-\tau)^{\alpha-1} k(\tau) d \tau-\int_{0}^{t}(t-\tau) k(\tau) d \tau+t \int_{t}^{1}(1-\tau)^{\alpha-1} k(\tau) d \tau\right) \\
= & \left(t \int_{0}^{1}(1-\tau)^{\alpha-1} k(\tau) d \tau-\int_{0}^{t}(t-\tau) k(\tau) d \tau\right) \text { for } t \in(0,1),
\end{aligned}
$$

which implies

$$
\begin{aligned}
D_{0+}^{\alpha} u(t) & =\frac{d^{2}}{d t^{2}} I_{0+}^{2-\alpha} u(t) \\
& =\frac{d^{2}}{d t^{2}}\left(t \int_{0}^{1}(1-\tau)^{\alpha-1} k(\tau) d \tau-\int_{0}^{t}(t-\tau) k(\tau) d \tau\right) \\
& =\frac{d}{d t}\left(\int_{0}^{1}(1-\tau)^{\alpha-1} k(\tau) d \tau-\int_{0}^{t} k(\tau) d \tau\right) \\
& =-k(t) \text { for } t \in(0,1)
\end{aligned}
$$

and this completes the proof.

Lemma 2.3. ([1, Theorem 2]) For $\alpha \in(1,2]$, the continuous function $G^{*}(t, s):=$ $t^{2-\alpha} G(t, s)$ has the following properties:

$$
\frac{\alpha-1}{\Gamma(\alpha)} t(1-t) s(1-s)^{\alpha-1} \leq G^{*}(t, s) \leq \frac{1}{\Gamma(\alpha)} s(1-s)^{\alpha-1} \text { for } t, s \in[0,1]
$$

Let $\mathcal{K}:=\left\{u \in C[0,1]: u(t) \geq(\alpha-1) t(1-t)\|u\|_{\infty}\right.$ for $\left.t \in[0,1]\right\}$. Here, $\|\cdot\|_{\infty}$ is the usual maximum norm in the Banach space $C[0,1]$, i.e., $\|u\|_{\infty}:=\max _{t \in[0,1]}|u(t)|$ for $u \in C[0,1]$. Then \mathcal{K} is a cone in $C[0,1]$.

Define $T: \mathcal{K} \rightarrow C[0,1]$ by, for $y \in \mathcal{K}$ and $t \in[0,1]$,

$$
T y(t):=\int_{0}^{1} G^{*}(t, s) h(s) f\left(s^{\alpha-2} y(s)\right) d s
$$

Then T is well defined. Indeed, for $y \in \mathcal{K}$ and $t \in[0,1]$, by Lemma 2.3 and $\left(H_{2}\right)^{\prime}$, we get

$$
0 \leq G^{*}(t, s) h(s) f\left(s^{\alpha-2} y(s)\right) \leq \frac{\|g(y)\|_{\infty}}{\Gamma(\alpha)} s^{\alpha-1}(1-s)^{\alpha-1} \bar{h}(s) \in L^{1}(0,1)
$$

Thus, by Lebesgue Dominated Convergence Theorem, $T y \in C[0,1]$ for all $y \in \mathcal{K}$ and T is well defined.

Lemma 2.4. Assume that $\left(H_{2}\right)$ is satisfied. Then $T: \mathcal{K} \rightarrow \mathcal{K}$ is completely continuous.

Proof. First, we show that $T: \mathcal{K} \rightarrow \mathcal{K}$. Let $y \in \mathcal{K}$. By Lemma 2.3,

$$
T y(t) \geq \frac{\alpha-1}{\Gamma(\alpha)} t(1-t) \int_{0}^{1} s(1-s)^{\alpha-1} h(s) f\left(s^{\alpha-2} y(s)\right) d s \text { for } t \in[0,1]
$$

and

$$
\|T y\|_{\infty} \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} h(s) f\left(s^{\alpha-2} y(s)\right) d s
$$

Consequently, $T y(t) \geq(\alpha-1) t(1-t)\|T y\|_{\infty}$ for $t \in[0,1]$ and $T y \in \mathcal{K}$.
Next, we show that T is continuous. Let $y_{n} \rightarrow y$ in \mathcal{K} as $n \rightarrow \infty$ and $\epsilon>0$ be given. Then there exists $M>0$ such that $\left\|y_{n}\right\|_{\infty}<M$ for all n and $\|y\|_{\infty}<M$. Since g_{i} is uniformly continuous on $[0, M]$ for $i=1,2, \cdots, n$, there exists $\delta>0$ such that if $z_{1}, z_{2} \in[0, M]$ and $\left|z_{1}-z_{2}\right|<\delta$, then $\left|g_{i}\left(z_{1}\right)-g_{i}\left(z_{2}\right)\right|<\frac{\Gamma(\alpha) \epsilon}{n C_{i}}$ for any $i=1,2, \cdots, n$. Here, $C_{i}=\int_{0}^{1} s(1-s)^{\alpha-1} h_{i}(s) d s>0$ for $i=1,2, \cdots, n$. Since $y_{n} \rightarrow y$ in \mathcal{K} as $n \rightarrow \infty$, there exists $N \in \mathbb{N}$ such that $\left\|y_{n}-y\right\|_{\infty}<\delta$ for
all $n \geq N$. By $\left(H_{2}\right)$ and Lemma 2.3, for $n \geq N$ and $t \in[0,1]$,

$$
\begin{aligned}
\left|T y_{n}(t)-T y(t)\right| & \leq \int_{0}^{1} G^{*}(t, s) h(s)\left|f\left(s^{\alpha-2} y_{n}(s)\right)-f\left(s^{\alpha-2} y(s)\right)\right| d s \\
& =\int_{0}^{1} G^{*}(t, s) \sum_{i=1}^{n} h_{i}(s)\left|g_{i}\left(y_{n}(s)\right)-g_{i}(y(s))\right| d s \\
& \leq \frac{1}{\Gamma(\alpha)} \sum_{i=1}^{n} \int_{0}^{1} s(1-s)^{\alpha-1} h_{i}(s)\left|g_{i}\left(y_{n}(s)\right)-g_{i}(y(s))\right| d s \\
& \leq \frac{1}{\Gamma(\alpha)} \sum_{i=1}^{n} C_{i} \frac{\Gamma(\alpha) \epsilon}{n C_{i}}=\epsilon .
\end{aligned}
$$

Consequently, $T y_{n} \rightarrow T y$ in \mathcal{K} as $n \rightarrow \infty$.
Finally, we show that T is compact. Let D be a bounded set in \mathcal{K}, i.e., there exists $L>0$ such that $\|y\|_{\infty} \leq L$ for any $y \in D$. For $y \in D$ and $t \in[0,1]$, by $\left(H_{2}\right)$ and Lemma 2.3,

$$
\begin{aligned}
|T y(t)| & \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} \sum_{i=1}^{n} h_{i}(s) g_{i}(y(s)) \\
& \leq \frac{1}{\Gamma(\alpha)} \sum_{i=1}^{n} M_{i} \int_{0}^{1} s(1-s)^{\alpha-1} h_{i}(s) d s<\infty
\end{aligned}
$$

where $M_{i}:=\max _{0 \leq z \leq L}\left|g_{i}(z)\right|$ for $i=1,2, \cdots, n$. Thus $T(D)$ is bounded.
Let $t_{1}, t_{2} \in[0,1]$ be given. By Lemma 2.3, for $s \in[0,1]$,

$$
\begin{aligned}
G^{*}\left(t_{2}, s\right)-G^{*}\left(t_{1}, s\right) & \leq \frac{1}{\Gamma(\alpha)} s(1-s)^{\alpha-1}-\frac{\alpha-1}{\Gamma(\alpha)} t_{1}\left(1-t_{1}\right) s(1-s)^{\alpha-1} \\
& =\frac{1}{\Gamma(\alpha)} s(1-s)^{\alpha-1}\left(1-(\alpha-1) t_{1}\left(1-t_{1}\right)\right) \\
& \leq \frac{s(1-s)^{\alpha-1}}{\Gamma(\alpha)} \leq \frac{s^{\alpha-1}(1-s)^{\alpha-1}}{\Gamma(\alpha)}
\end{aligned}
$$

Similarly, it can be shown that $G^{*}\left(t_{1}, s\right)-G^{*}\left(t_{2}, s\right) \leq \frac{s^{\alpha-1}(1-s)^{\alpha-1}}{\Gamma(\alpha)}$ for $s \in[0,1]$. Thus,

$$
\begin{equation*}
\left|G^{*}\left(t_{1}, s\right)-G^{*}\left(t_{2}, s\right)\right| \leq \frac{1}{\Gamma(\alpha)} s^{\alpha-1}(1-s)^{\alpha-1} \text { for } s \in[0,1] \tag{2}
\end{equation*}
$$

By $\left(H_{2}\right)$, there exists $\delta_{1}>0$ such that

$$
\begin{equation*}
\frac{1}{\Gamma(\alpha)} \sum_{i=1}^{n} M_{i} \int_{0}^{\delta_{1}} s^{\alpha-1}(1-s)^{\alpha-1} h_{i}(s) d s<\frac{\epsilon}{3} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\Gamma(\alpha)} \sum_{i=1}^{n} M_{i} \int_{1-\delta_{1}}^{1} s^{\alpha-1}(1-s)^{\alpha-1} h_{i}(s) d s<\frac{\epsilon}{3} \tag{4}
\end{equation*}
$$

Since $G^{*}(t, s)$ is uniformly continuous, there exists $\delta>0$ such that

$$
\begin{equation*}
\text { if }\left|t_{2}-t_{1}\right|<\delta \text {, then }\left|G^{*}\left(t_{1}, s\right)-G^{*}\left(t_{2}, s\right)\right|<\frac{\epsilon}{3 \sum_{i=1}^{n} M_{i} \hat{C}_{i}} \text { for all } s \in[0,1] \text {. } \tag{5}
\end{equation*}
$$

Here $\hat{C}_{i}=\max _{\delta_{1} \leq s \leq 1-\delta_{1}} h_{i}(s)$ for $i=1,2, \cdots, n$. Let t_{1} and t_{2} be given with $\left|t_{1}-t_{2}\right|<\delta$ and $y \in D$. Then, by (2), (3), (4) and (5),

$$
\begin{aligned}
\left|T y\left(t_{1}\right)-T y\left(t_{2}\right)\right|= & \left|\int_{0}^{1}\left(G^{*}\left(t_{1}, s\right)-G^{*}\left(t_{2}, s\right)\right) h(s) f\left(s^{\alpha-2} y(s)\right) d s\right| \\
\leq & \int_{0}^{1}\left|G^{*}\left(t_{1}, s\right)-G^{*}\left(t_{2}, s\right)\right| \sum_{i=1}^{n} h_{i}(s) g_{i}(y(s)) d s \\
\leq & \sum_{i=1}^{n} M_{i} \int_{0}^{\delta_{1}}\left|G^{*}\left(t_{1}, s\right)-G^{*}\left(t_{2}, s\right)\right| h_{i}(s) d s \\
& +\sum_{i=1}^{n} M_{i} \int_{1-\delta_{1}}^{1}\left|G^{*}\left(t_{1}, s\right)-G^{*}\left(t_{2}, s\right)\right| h_{i}(s) d s \\
& +\sum_{i=1}^{n} M_{i} \hat{C}_{i} \int_{\delta_{1}}^{1-\delta_{1}}\left|G^{*}\left(t_{1}, s\right)-G^{*}\left(t_{2}, s\right)\right| d s \\
\leq & \frac{1}{\Gamma(\alpha)} \sum_{i=1}^{n} M_{i} \int_{0}^{\delta_{1}} s^{\alpha-1}(1-s)^{\alpha-1} h_{i}(s) d s \\
& +\frac{1}{\Gamma(\alpha)} \sum_{i=1}^{n} M_{i} \int_{1-\delta_{1}}^{1} s^{\alpha-1}(1-s)^{\alpha-1} h_{i}(s) d s \\
& +\sum_{i=1}^{n} M_{i} \hat{C}_{i} \frac{\epsilon}{3 \sum_{i=1}^{n} M_{i} C_{i}}<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$

which implies $T D$ is equicontinuous. Thus, by Arzelà-Ascoli theorem, T is compact.

Lemma 2.5. Assume that $\left(H_{1}\right)$ and $\left(H_{2}\right)$ are satisfied. If y is a fixed point of T, then u is a solution to the problem $(F D E)$. Here $u(t):=t^{\alpha-2} y(t)$ for $t \in(0,1]$ and $u(0):=0$.

Proof. Let y be a fixed point of T. Then

$$
y(t)=T y(t)=t^{2-\alpha} \int_{0}^{1} G(t, s) h(s) f\left(s^{\alpha-2} y(s)\right) d s \text { for } t \in[0,1] .
$$

For $\alpha=2$, by Lemma 2.2, the proof is clear. Let $\alpha \in(1,2)$ be given and let

$$
u(t):= \begin{cases}t^{\alpha-2} y(t), & \text { for } t \in(0,1], \\ 0, & \text { for } t=0\end{cases}
$$

Then $u(t)=t^{\alpha-2} y(t)=\int_{0}^{1} G(t, s) h(s) f(u(s)) d s$ for $t \in(0,1]$. From the facts that $u(0)=0$ and $G(0, s)=0$ for all $s \in[0,1]$, it follows that

$$
u(t)=\int_{0}^{1} G(t, s) h(s) f(u(s)) d s \text { for } t \in[0,1]
$$

By $\left(H_{2}\right)^{\prime}$ and Lebesgue's dominated convergence theorem,

$$
\begin{aligned}
0 \leq \lim _{t \rightarrow 0^{+}} u(t) & =\lim _{t \rightarrow 0^{+}} \int_{0}^{1} G(t, s) h(s) f\left(s^{\alpha-2} y(s)\right) d s \\
& \leq\|g(y)\|_{\infty} \lim _{t \rightarrow 0^{+}} \int_{0}^{1} G(t, s) \bar{h}(s) d s=0
\end{aligned}
$$

which implies that $u \in C[0,1]$. Since $h(\cdot) f(u(\cdot)) \in \mathcal{A}_{\alpha}$, by Lemma 2.2 , we can conclude that u is a solution to the problem (FDE).

Theorem 2.6. ([2]) Let E be a Banach space and let K be a cone in E. Assume that Ω_{1} and Ω_{2} are open subsets of E with $0 \in \Omega_{1}, \overline{\Omega_{1}} \subset \Omega_{2}$. Assume that $T: K \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right) \rightarrow K$ is completely continuous such that either
(1) $\|T u\| \leq\|u\|$ for $u \in K \cap \partial \Omega_{1}$ and $\|T u\| \geq\|u\|$ for $u \in K \cap \partial \Omega_{2}$, or
(2) $\|T u\| \geq\|u\|$ for $u \in K \cap \partial \Omega_{1}$ and $\|T u\| \leq\|u\|$ for $u \in K \cap \partial \Omega_{2}$.

Then T has a fixed point in $K \cap\left(\overline{\Omega_{2}} \backslash \Omega_{1}\right)$.

3. Main results

For convenience, we introduce the following notations

$$
g_{0}=\lim _{s \rightarrow 0} \frac{g(s)}{s} \text { and } g_{\infty}=\lim _{s \rightarrow \infty} \frac{g(s)}{s}
$$

where g is the function in the assumption $\left(H_{2}\right)^{\prime}$.
Theorem 3.1. Assume that $\left(H_{1}\right)$ and $\left(H_{2}\right)$ are satisfied.
(1) If $g_{0}=0$ and $g_{\infty}=\infty$, then the problem (FDE) has a positive solution.
(2) If $g_{0}=\infty$ and $g_{\infty}=0$, then the problem (FDE) has a positive solution. Proof. (1) Let $\epsilon:=\Gamma(\alpha)\left(\int_{0}^{1} s(1-s)^{\alpha-1} \bar{h}(s) d s\right)^{-1}>0$. By $g_{0}=0$, we may choose $r>0$ satisfying

$$
\begin{equation*}
g(z) \leq \varepsilon z \text { for all } z \in[0, r] \tag{6}
\end{equation*}
$$

Let $B_{r}=\left\{y \in C[0,1]:\|y\|_{\infty}<r\right\}$. From Lemma 2.3 and (6), it follows that for $y \in \mathcal{K} \cap \partial B_{r}$ and $t \in[0,1]$,

$$
\begin{aligned}
T y(t) & =\int_{0}^{1} G^{*}(t, s) h(s) f\left(s^{\alpha-2} y(s)\right) d s \\
& \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} \bar{h}(s) g(y(s)) d s \\
& \leq \frac{\epsilon}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} \bar{h}(s) d s\|y\|_{\infty}
\end{aligned}
$$

Therefore, by the choice of $\epsilon,\|T y\|_{\infty} \leq\|y\|_{\infty}$ for all $y \in \mathcal{K} \cap \partial B_{r}$.

Let

$$
\rho:=\frac{64 \Gamma(\alpha)}{(\alpha-1)^{2}}\left(\int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} \underline{h}(s) d s\right)^{-1}
$$

Since $g_{\infty}=\infty$, there exists $M>0$ such that $g(v) \geq \rho v$ for $v \geq M$. Take $R>\max \left\{\frac{16}{\alpha-1} M, r\right\}$ and $B_{R}=\left\{y \in C[0,1]:\|y\|_{\infty}<R\right\}$. For $y \in \mathcal{K} \cap \partial B_{R}$,

$$
y(t) \geq \frac{\alpha-1}{16}\|y\|_{\infty}>M \text { for } t \in\left[\frac{1}{4}, \frac{3}{4}\right] .
$$

Consequently,

$$
\begin{equation*}
g(y(t)) \geq \rho y(t) \text { for } y \in \mathcal{K} \cap \partial B_{R} \text { and } t \in\left[\frac{1}{4}, \frac{3}{4}\right] \tag{7}
\end{equation*}
$$

By Lemma 2.3 and (7),

$$
\begin{aligned}
\|T y\|_{\infty} \geq T y\left(\frac{1}{2}\right) & =\int_{0}^{1} G^{*}\left(\frac{1}{2}, s\right) h(s) f\left(s^{\alpha-2} y(s)\right) d s \\
& \geq \frac{\alpha-1}{4 \Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} \underline{h}(s) g(y(s)) d s \\
& \geq \frac{\rho(\alpha-1)}{4 \Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} \underline{h}(s) y(s) d s \\
& \geq \frac{\rho(\alpha-1)^{2}}{64 \Gamma(\alpha)} \int_{\frac{1}{4}}^{\frac{3}{4}} s(1-s)^{\alpha-1} \underline{h}(s) d s\|y\|_{\infty} .
\end{aligned}
$$

Therefore, by the choice of $\rho,\|T y\|_{\infty} \geq\|y\|_{\infty}$ for all $y \in \mathcal{K} \cap \partial B_{R}$. By Theorem 2.6, T has a fixed point y in $\mathcal{K} \cap\left(\bar{B}_{R} \backslash B_{r}\right)$. Consequently, the problem (FDE) has a positive solution u in view of Lemma 2.5.
(2) Let

$$
L=\frac{16}{\alpha-1}\left(\int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}\left(\frac{1}{2}, s\right) \underline{h}(s) d s\right)^{-1} .
$$

By $g_{0}=\infty$, we may choose r_{1} so that $g(z) \geq L z$ for $0<z \leq r_{1}$. Let $B_{r_{1}}=$ $\left\{y \in C[0,1]:\|y\|_{\infty}<r_{1}\right\}$. For $y \in \mathcal{K} \cap \partial B_{r_{1}}$,

$$
\begin{aligned}
\|T y\|_{\infty} \geq T y\left(\frac{1}{2}\right) & =\int_{0}^{1} G^{*}\left(\frac{1}{2}, s\right) h(s) f\left(s^{\alpha-2} y(s)\right) d s \\
& \geq \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}\left(\frac{1}{2}, s\right) \underline{h}(s) g(y(s)) d s \\
& \geq L \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}\left(\frac{1}{2}, s\right) \underline{h}(s) y(s) d s \\
& \geq \frac{L(\alpha-1)}{16} \int_{\frac{1}{4}}^{\frac{3}{4}} G^{*}\left(\frac{1}{2}, s\right) \underline{h}(s) d s\|y\|_{\infty} .
\end{aligned}
$$

Therefore, by the choice of $L,\|T y\|_{\infty} \geq\|y\|_{\infty}$ for all $y \in \mathcal{K} \cap \partial B_{r_{1}}$.
Let $\zeta>0$ be a constant satisfying

$$
\Gamma(\alpha)-\zeta \int_{0}^{1} s(1-s)^{\alpha-1} \bar{h}(s) d s>0
$$

Since $g_{\infty}=0$, there exists $L_{1}>0$ such that $g(z) \leq \zeta z$ for $z>L_{1}$. Choose $R_{1}\left(>r_{1}\right)$ satisfying

$$
R_{1}>\max \left\{L_{1}, \frac{\max _{0 \leq z \leq L_{1}}|g(z)| \int_{0}^{1} s(1-s)^{\alpha-1} \bar{h}(s) d s}{\Gamma(\alpha)-\zeta \int_{0}^{1} s(1-s)^{\alpha-1} \bar{h}(s) d s}\right\}
$$

and let $B_{R_{1}}=\left\{y \in C[0,1]:\|y\|_{\infty}<R_{1}\right\}$. By Lemma 2.2 and $\left(H_{2}\right)^{\prime}$, for $y \in \mathcal{K} \cap \partial B_{R_{1}}$ and $t \in[0,1]$,

$$
\begin{aligned}
T y(t) & =\int_{0}^{1} G^{*}(t, s) h(s) f\left(s^{\alpha-2} y(s)\right) d s \\
& \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{1} s(1-s)^{\alpha-1} \bar{h}(s) g(y(s)) d s \\
& =\frac{1}{\Gamma(\alpha)}\left[\int_{A_{1}} s(1-s)^{\alpha-1} \bar{h}(s) g(y(s)) d s+\int_{A_{2}} s(1-s)^{\alpha-1} \bar{h}(s) g(y(s)) d s\right] \\
& \leq \frac{1}{\Gamma(\alpha)}\left[\max _{0 \leq z \leq L_{1}}|g(z)| \int_{A_{1}} s(1-s)^{\alpha-1} \bar{h}(s) d s+\zeta \int_{A_{2}} s(1-s)^{\alpha-1} \bar{h}(s) y(s) d s\right] \\
& \leq \frac{1}{\Gamma(\alpha)}\left(\max _{0 \leq z \leq L_{1}}|g(z)|+\zeta R_{1}\right) \int_{0}^{1} s(1-s)^{\alpha-1} \bar{h}(s) d s \\
& \leq R_{1}=\|y\|_{\infty}
\end{aligned}
$$

Here $A_{1}=\left\{s: 0 \leq y(s) \leq L_{1}\right\}$ and $A_{2}=\left\{s: L_{1} \leq y(s) \leq R_{1}\right\}$. Thus $\|T y\|_{\infty} \leq\|y\|_{\infty}$ for $y \in \mathcal{K} \cap \partial B_{R_{1}}$. By Theorem 2.6, T has a fixed point y in
$\mathcal{K} \cap\left(\bar{B}_{R_{1}} \backslash B_{r_{1}}\right)$. Consequently, the problem $(F D E)$ has a positive solution u in view of Lemma 2.5.

Example 3.2. Let $\alpha \in(1,2]$ be given and $h(t)=(1-t)^{-q}$ with $q<\alpha$. Then $h \in \mathcal{A}_{\alpha}$, i.e., $\left(H_{1}\right)$ is satisfied. Let $f(u)=u^{a}$ with $a \in\left(0, \alpha^{*}\right)$. Here, $\alpha^{*}=\frac{\alpha}{2-\alpha}$ for $\alpha \in(1,2)$ and $\alpha^{*}=\infty$ for $\alpha=2$. Then $h(t) f\left(t^{\alpha-2} y\right)=t^{a(\alpha-2)}(1-t)^{-q} y^{a}$ and $\left(H_{2}\right)$ is satisfied with $n=1, h_{1}(t)=t^{a(\alpha-2)}(1-t)^{-q} \in \mathcal{B}_{\alpha}$ and $g_{1}(y)=y^{a}$. (i) If $a \in(0,1)$, then $\left(g_{1}\right)_{0}=\infty$ and $\left(g_{1}\right)_{\infty}=0$.
(ii) If $a \in\left(1, \alpha^{*}\right)$, then $\left(g_{1}\right)_{0}=0$ and $\left(g_{1}\right)_{\infty}=\infty$.

References

[1] D. Jiang and C. Yuan, The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application, Nonlinear Anal., 72 (2010),710-719.
[2] D. J. Guo and V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, Inc., Boston, MA, 1988.
[3] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integral And Derivatives (Theory and Applications), Gordon and Breach, Switzerland, 1993.

Jeongmi Jeong
Department of Mathematics, Pusan National University, Busan 46241, Republic of Korea

Email address: jmjeong321@gmail.com
Yong-Hoon Lee
Department of Mathematics, Pusan National University, Busan 46241, Republic of Korea

Email address: yhlee@pusan.ac.kr

[^0]: Received December 12, 2023; Accepted December 27, 2023.
 2010 Mathematics Subject Classification. 34B15, 34B18, 34B27.
 Key words and phrases. fractional differential equation, existence, positive solution, singular weight.

 * This work was financially supported by a 2-Year Research Grant of Pusan National University.
 * Corresponding author.

