• 제목/요약/키워드: Korean mathematicians

검색결과 147건 처리시간 0.018초

조선(朝鮮)의 산학훈도(算學訓導)와 산학교수(算學敎授) (Mathematics Teachers(算學訓導) and Professors(算學敎授) in Chosen Dynasty)

  • 홍성사;홍영희
    • 한국수학사학회지
    • /
    • 제19권3호
    • /
    • pp.1-20
    • /
    • 2006
  • 조선(朝鮮) 시대 수학에 관계된 행정 업무는 취재(取才)에 의하여 뽑힌 중인(中人) 산원(算員)들에 의하여 이루어졌다. 이들은 호조(戶曹)에 속하며, 직위는 계사(計士), 별제(別提), 훈도(訓導), 교수(敎授)이다. 산원(算員)들의 교육과 취재를 위하여 훈도(訓導)와 교수(敎授)들의 역할은 매우 중요하다. 주학선생안(籌學先生案)과 주학입격안(籌學入格案)을 통하여 훈도(訓導)와 교수(敎授)를 조사한다.

  • PDF

Teaching Linear Algebra to High School Students

  • Choe, Young-Han
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제8권2호
    • /
    • pp.107-114
    • /
    • 2004
  • University teachers of linear algebra often feel annoyed and disarmed when faced with the inability of their students to cope with concepts that they consider to be very simple. Usually, they lay the blame on the impossibility for the students to use geometrical intuition or the lack of practice in basic logic and set theory. J.-L. Dorier [(2002): Teaching Linear Algebra at University. In: T. Li (Ed.), Proceedings of the International Congress of Mathematicians (Beijing: August 20-28, 2002), Vol. III: Invited Lectures (pp. 875-884). Beijing: Higher Education Press] mentioned that the situation could not be improved substantially with the teaching of Cartesian geometry or/and logic and set theory prior to the linear algebra. In East Asian countries, science-orientated mathematics curricula of the high schools consist of calculus with many other materials. To understand differential and integral calculus efficiently or for other reasons, students have to learn a lot of content (and concepts) in linear algebra, such as ordered pairs, n-tuple numbers, planar and spatial coordinates, vectors, polynomials, matrices, etc., from an early age. The content of linear algebra is spread out from grades 7 to 12. When the high school teachers teach the content of linear algebra, however, they do not concern much about the concepts of content. With small effort, teachers can help the students to build concepts of vocabularies and languages of linear algebra.

  • PDF

Euclid 원론과 Pardies 원론의 비교 연구 (A Comparative Study on Euclid's Elements and Pardies' Elements)

  • 장혜원
    • 한국수학사학회지
    • /
    • 제33권1호
    • /
    • pp.33-53
    • /
    • 2020
  • Euclid's Elements has been considered as the stereotype of logical and deductive approach to mathematics in the history of mathematics. Nonetheless, it has been criticized by its dryness and difficulties for learning. It is worthwhile to noticing mathematicians' struggle for providing some alternatives to Euclid's Elements. One of these alternatives was written by a French scientist, Pardies who called it 'Elemens de Geometrie ou par une methode courte & aisee l'on peut apprendre ce qu'il faut scavoir d'Euclide, d'Archimede, d'Apllonius & les plus belles inventions des anciens & des nouveaux Geometres.' A precedent research presented its historical meaning in traditional mathematics of China and Joseon as well as its didactical meaning in mathematics education with the overview of this book. However, it has a limitation that there isn't elaborate comparison between Euclid's and Pardies'in the aspects of contents as well as the approaching method. This evokes the curiosity enough to encourage this research. So, this research aims to compare Pardies' Elements and Euclid's Elements. Which propositions Pardies selected from Euclid's Elements? How were they restructured in Pardies' Elements? Responding these questions, the researcher confirmed his easy method of learning geometry intended by Pardies.

Harriot(1560-1621) 의 대수기호와 방정식의 근 (Harriot's algebraic symbol and the roots of equation)

  • 신경희
    • 한국수학사학회지
    • /
    • 제25권1호
    • /
    • pp.15-27
    • /
    • 2012
  • 16세기 후반과 17세기 전반에 활동했던 영국의 과학자이자 수학자인 Thomas Harriot은 대수기호를 독창적으로 만들어 사용하였고 일부는 오늘날에도 사용하고 있다. 또한 방정식에서 음수근 뿐만 아니라 복소수근도 받아들였는데 그의 이러한 관점은 당시로는 혁신적이었으며 나아가 방정식의 형태의 일반화에도 진일보한 모습을 보여주었다. 사후 유작 외에는 생전에 수학 저서가 한 권도 없는 탓에 Harriot 개인이나 그가 이루어 놓은 수학이 수학적 성취에 비하여 수학사나 수학교육에서 그에 대하여 소홀히 다루어진 감이 있다. 이 논문에서는 동시대 유명한 수학자였던 비에타와 데카르트의 대수기호와 방정식론을 비교함으로써 Harriot이 이루어놓은 수학을 알리고자 한다.

정약용(丁若鏞)의 산서(算書) 구고원류(勾股源流)의 수학적(數學的) 구조(構造) (Mathematical Structures of Jeong Yag-yong's Gugo Wonlyu)

  • 홍성사;홍영희;이승온
    • 한국수학사학회지
    • /
    • 제28권6호
    • /
    • pp.301-310
    • /
    • 2015
  • Since Jiuzhang Suanshu, the main tools in the theory of right triangles, known as Gougushu in East Asia were algebraic identities about three sides of a right triangle derived from the Pythagorean theorem. Using tianyuanshu up to siyuanshu, Song-Yuan mathematicians could skip over those identities in the theory. Chinese Mathematics in the 17-18th centuries were mainly concerned with the identities along with the western geometrical proofs. Jeong Yag-yong (1762-1836), a well known Joseon scholar and writer of the school of Silhak, noticed that those identities can be derived through algebra and then wrote Gugo Wonlyu (勾股源流) in the early 19th century. We show that Jeong reveals the algebraic structure of polynomials with the three indeterminates in the book along with their order structure. Although the title refers to right triangles, it is the first pure algebra book in Joseon mathematics, if not in East Asia.

18세기(世紀) 초(初) 조선(朝鮮) 산학(算學) (Chosun Mathematics in the early 18th century)

  • 홍성사;홍영희
    • 한국수학사학회지
    • /
    • 제25권2호
    • /
    • pp.1-9
    • /
    • 2012
  • 1592년과 1636년 양대 전란으로 전통적인 조선 산학의 결과는 거의 소멸되어, 17세기 중엽 조선 산학은 새로 시작할 수밖에 없었다. 조선은 같은 시기에 청으로 부터 도입된 시헌력(時憲曆, 1645)을 이해하기 위하여 서양수학에 관련된 자료를 수입하기 시작하였다. 한편 전통 산학을 위하여 김시진(金始振, 1618-1667)은 산학계몽(算學啓蒙, 1299)을 중간(重刊)하였다. 이들의 영향으로 이루어진 조태구(趙泰耉, 1660-1723)의 주서관견(籌書管見)과 홍정하(洪正夏, 1684-?)의 구일집(九一集)을 함께 조사하여 이들이 조선 산학의 발전에 새로운 전기를 마련한 것을 보인다.

번적과 익적의 역사 (History of Fan Ji and Yi Ji)

  • 홍성사;홍영희;장혜원
    • 한국수학사학회지
    • /
    • 제18권3호
    • /
    • pp.39-54
    • /
    • 2005
  • 중국 산학에서는 구장산술의 제곱근과 세제곱근의 해법을 일반화하여 고헌이 도입한 증승개방법을 통하여 다항방정식의 해의 근사값을 구한다. 이 때 도구로 사용되는 조립제법에서 음수와 그 연산을 정확히 사용하지 않아서 번적, 익적이라는 개념이 나타나는데, 이는 조선 산학에도 그대로 사용되었다. 먼저 중국과 조선에서 번적, 익확에 대한 역사를 조사하고, 19세기 중엽에 조선 산학자 남병길과 이상혁이 번적과 익적에 대한 충분조건을 얻어내고 이를 증명한 사실을 밝혀낸다.

  • PDF

남병길(南秉吉)의 방정식논(方程式論) (Nam Byung Gil and his Theory of Equations)

  • 홍성사;홍영희
    • 한국수학사학회지
    • /
    • 제20권2호
    • /
    • pp.1-18
    • /
    • 2007
  • 19세기 조선(朝鮮) 산학자(算學者) 이상혁(李尙爀), 남병길(南秉吉)은 구장산술(九章算術), 술리정온(數理精蘊) 등을 연구한 후 송(宋), 원대(元代)의 수학을 구조적으로 연구하여 조선(朝鮮) 산학(算學)이 크게 발전하는 전기를 마련하였다. 이 논문에서는 남병길(南秉吉)의 저서 집고연단(輯古演段)과 무이해(無異解)를 조사하여 그의 방정식논(方程式論)을 연구한다. 남병길(南秉吉)은 이상혁(李尙爀)과 공동 연구를 통하여 송(宋), 원대(元代)와 서양(西洋) 수학(數學)의 방정식논(方程式論)을 함께 구조적으로 정리하였다.

  • PDF

수학적 관행의 변화에 관한 소고 (A Study on the Change of Mathematical Practice)

  • 김부윤;주신영
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제21권3호
    • /
    • pp.527-540
    • /
    • 2007
  • 수학적 지식들이 참으로 인정되기 위해서는 많은 시간과 노력이 필요하다. 수학적 지식들은 추가되거나, 수정되거나, 혹은 거짓인 것으로 밝혀져왔다. 수학적 지식들은 수학적 언어, 명제, 추론, 질문, 메타수학적 관점으로 이루어져있다. 이것들은 수학자들의 연구과 반박에 의해, 반박을 고려한 증명의 수정에 의해, 새로운 개념의 소개에 의해, 새로운 개념에 대한 질문의 추가에 의해, 새로운 질문에 대한 답변을 찾기 위한 노력에 의해, 이전의 연구들을 현재에 적용하려는 시도에 의해 끊임없이 변화되어왔다. 본 연구에서는 Kitcher가 제시한 수학적 지식의 변화를 소개하고, 그 변화의 다양한 예에 대하여 살펴본다.

  • PDF

창의적 생산력 신장의 교육목표 이해를 위한 수학영재의 수학적 창의성 개념 탐색 (A study on the concept of mathematical creativity in the mathematically gifted aspect)

  • 이종희;김기연
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제46권4호
    • /
    • pp.445-464
    • /
    • 2007
  • On considering the mathematical creativity of the gifted in mathematics, some points should be reflected such as the characteristics of leaners, the gifted and of domain-special facts in mathematics. And the clear view of mathematical creativity of the gifted in mathematics makes a way to define the meanings of creative-productive ability and of creative products. Therefore to explicate the concept of mathematical creativity of the gifted in mathematics, researcher reviewed literacies of the concept of creativity in general fields, classical mathematicians, and school mathematics. In conclusion, first, mathematical creativity of the gifted in mathematics should be considered on the aspects of subject-mathematics, object-the gifted, and performing-gifted education. Second, it contains advanced problem solving matters on the school mathematics curriculum but reflect the process of recovery and reinvent and it is suggested in [fig.1] and [fig.2].

  • PDF