• Title/Summary/Keyword: Korean Tilting Train eXpress

Search Result 64, Processing Time 0.056 seconds

A Study on the Evaluation of the Failure for Carbody Structures made of Laminated Fiber-Reinforced Composite Materials Using Total Laminate Approach (전체 적층판 접근법을 이용한 섬유강화 적층 복합재 차체 구조물의 파손평가 연구)

  • 신광복;구동회
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.18-28
    • /
    • 2004
  • In order to evaluate the strength of carbody structures of railway rolling stock made of laminated fiber-reinforced composite materials, total laminate approach was introduced. Structural analyses were conducted to check the basic design of hybrid composite carbody structures of the Korean Tilting Train eXpress(TTX) with the service speed of 180km/h. The mechanical tests were also conducted to obtain strengths of composite laminates. The results show that all stress components of composite carbody structures are inside of failure envelopes and total laminate approach is recommended to predict the failure of hybrid composite carbody structures at the stage of the basic design.

Evaluation Method of Riding Comfort of Train by using HRV (Heart Rate Variability) (심전도를 이용한 열차 승차감 평가 방법 연구)

  • Song, Yong-Soo;Kim, Baek-Hyun;Kim, Yong-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1017-1025
    • /
    • 2010
  • The Purpose of this paper is to characteristics and analysis of ride comfort by using HRV. Although the riding comfort of trains has been managed by setting allowable accelerations of 3-axis motion in cabins, it is impossible for this approach to express the psychophysical relationship between various vibrational factors and riding comfort. in order to propose a function to evaluate the riding comfort of train on conventional railroad, an experiment was performed with the Korea Tilting Tran eXpress(TTX). As a result, by referring to some international standards on the method of evaluating ride comfort, a modified method was proposed to evaluate the lateral vibration in addition to the roll motion on carve transitions.

  • PDF

The Study of Train Management System Design for TTX(Tilting Train eXpress) EMU (전기식 틸팅차량 열차제어시스템 기술개발 연구)

  • Lee Su-Gil;Han Seong-Ho;Song Yong Soo;Han Young-Jae;Lee Eun-Kyu;Jeon Byoung-Jin
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1460-1462
    • /
    • 2004
  • 기존노선을 이용한 고속화 신기술 개발사업 과제를 수행하여 중장거리 및 도시간의 교통해소를 위해 중고속 철도차량을 개발하여 최고속도 180km/h의 속도로 운행할수 있는 차량의 개발에 있어 핵심 전장품인 열차제어진단장치를 국산화하여 수입대처효과 및 기술개발에 기여하고 있다.

  • PDF

Evaluation for Joint performance of the Hybrid Composite Carbody Structure (하이브리드 복합재 차체의 접합부 특성 평가)

  • Jeong Jong-Cheol;Cho Se-Hyun;Cho Hyun-Joo;Shin Kwang-Bok;Yoon Sung-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.185-188
    • /
    • 2004
  • Regarding some of the components of the Korean Tilting Train eXpress(TTX), the lightweight-vehicle development was mainly focused to this study, and so as using the materials, the existing material, steel or aluminum carbody was changed to the composite carbody with both design and manufacturing methods. Therefore the evaluation of the performance of joint strength between composite and metallic boundary area, especially the under frame and the carbody was required, and the compressive and the bending tests were conducted as the sub-scale specimen. In this evaluation, there was involved the sufficient strengths at the joint area between the underframe and the carbody, and is resulted as the increment of the safety factor through the observation of failure conditions.

  • PDF

A Study on the manufacturing process for Hybrid Composite Carbody Structures (하이브리드 복합재 차체 구조물의 성형공정에 관한 연구)

  • Shin Kwang-Bok;Cho Se-Hyun;Lee Sang-Jin
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.461-466
    • /
    • 2004
  • The hybrid composite carbody structures were considered as the carbody system of Korean Tilting Train eXpress(TTX) to achieve the lightweight design. The TTX carbodies are composed of the carbody shell made of the sandwich composite structure and the undeframe made of the metal structure. The sandwich structures were used to minimize the weight of carbody, and the metal underframe was used to modify the design easily and to keep the strength of underframe by the installation of the electrical equipments. The sandwich carbody structures will be cured in an autoclave. In this paper, the manufacturing processes of the TTX carbody structures were introduced briefly.

  • PDF

A Study on the Evaluation of the Failure for Carbody Structures made of Laminated Fiber-Reinforced Composite Materials (섬유강화 적층 복합재 차체 구조물의 파손평가 연구)

  • Shin Kwang-Bok;Hahn Seong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.65-72
    • /
    • 2003
  • In order to evaluate the strength of carbody structures of railway rolling stock made of laminated fiber-reinforced composite materials, total laminate approach was introduced. Structural analyses were conducted to check the basic design of the hybrid composite carbody structure of the Korean Tilting Train eXpress(TTX) with the service speed of l80km/h. The mechanical tests were also conducted to obtain strengths of composite laminates. The results shown that all stress components of composite carbody structures were inside of failure envelopes and total laminate approach was recommended to predict the failure of composite carbody structures at the stage of the basic design.

  • PDF

A Study on Re-adhesion Control of Propulsion System for TTX(Tilting Train eXpress) (틸팅 차량용 추진시스템의 재점착 제어방법에 관한 연구)

  • Lee Chang-Hee;Kim Hyung-Cheol;Lee Eun-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.813-818
    • /
    • 2005
  • In this paper, a re-adhesion control scheme is proposed for 1C2M propulsion system of TTX. The possibility of slip between wheel and rail in railway system is increasing because of the tendency of high speed and a climatic change. This slip results in the decrease of adhesive effort between this wheel and rail, so the control strategy of traction effort which can reduce the speed promptly and make most use of the maximum adhesive force is absolutely necessary. This paper describes the modeling of the TTX system, and this system is verified by the simulation.

  • PDF

The Study of Propulsion and Brake System for TTX(Tilting Train eXpress) (TTX 차량 견인제동력 산정에 관한 연구)

  • Lee, Su-Gil;Han, Seong-Ho;Han, Young-Jae;Song, Yong-Soo;Lee, Eun-Kyu;Lee, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.281-283
    • /
    • 2004
  • 인구가 증가하면서 인간의 생활활동 범위가 증가되었고 이에 따라 운송시스템에 대한 수요가 크게 증대되고 있다. 그러나 물류 이동에 필요한 여러 가지 제반 시설은 이를 충족시키지 못하고 있으며, 이로 인하여 현재 국내의 물류수송효율은 최악의 상황에 직면해있다. 이로써 대용량의 수송능력을 담당하는 철도차량 운송 시스템에 대한 수요가 급증하게 되었다 따라서 이에 대비하고자 많은 신규 노선을 계획하고, 이와 함께 신설되는 노선에 대해서는 시스템 운영 효율의 극대화를 위해 노선별로 고속전철과 지하철, 경전철, 틸팅차량, 그리고 자기부상열차 시스템 등 여러 가지 방식이 검토 중이 있으며 차량에 가장 적합한 추진시스템을 설계하는 것이 차량의 성능에 크게 향상시킬 수 있다.

  • PDF

The Study of Main Electrical Circuit Design for TTX(Tilting Train eXpress) (TTX 차량 주회로 설계에 관한 기술연구)

  • Lee, Su-Gil;Han, Seong-Ho;Han, Young-Jae;Song, Yong-Soo;Lee, Eun-Kyu;Lee, Young-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.284-286
    • /
    • 2004
  • 기존노선을 이용한 고속화 신기술 개발사업 과제를 수행하여 중장거리 및 도시간의 교통해소를 위해 중고속 철도차량을 개발하여 최고속도 180km/h의 속도로 운행할수 있는 차량의 주요 전기시스템인 주변압기, 주변환장치, 견인전동기, 보조전원장치의 설계 및 사양을 정립하여 TTX차량을 제작하는 연구를 수행하였다.

  • PDF

Safety Analysis of Carbon Composite-body Against Lightning Strikes (탄소섬유 복합차체의 낙뢰에 대한 안전성 분석)

  • Kim, Sung-Wook;Park, Dae-Won;Kil, Gyung-Suk;Mok, Jae-Kyun;Han, Ju-Seop
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.321-326
    • /
    • 2008
  • Light weight of vehicles by composite materials makes possible high speed, energy saving, and low repair cost. As Bimodal Tram and Tilting Train eXpress(TTX) use carbon composite material for their bodies, safety for passengers and electrical devices against unexpected failures has been issued more than ever. Lightning strike which generates high voltages and large currents is the worst case for the safety of passengers and devices. With this background, we experimentally investigated the insulation breakdown phenomena on carbon composite materials by the application of lightning surge voltage and current. From the experimental results, we could estimate whether the composite body is safe or not for the inside passengers and devices against lightning strikes.

  • PDF