• Title/Summary/Keyword: Korea power system

Search Result 12,499, Processing Time 0.116 seconds

A study on the application of 22.9kV HTS Cable in Korean Power System (22.9kV 초전도케이블 실계통 도입방안에 대한 세부계통검토)

  • Lee Seung Ryul;Kim Jong yul;Yoon Jae Young
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.436-439
    • /
    • 2004
  • As power system is developed, an expansion of power equipments is very necessary to the stability of power system and the problem of locating the facilities on downtown is more serious. At this time introduction of superconducting devices are very good alternative to solve the problem. This study describes cases possible to apply 22.9kV HTS cable to power system and analyzes the power system with HTS cable.

  • PDF

The Conceptual Design of Korea High Speed Train System (한국형 고속전철 차량시스템의 개념설계)

  • 김경택;정경렬
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.172-180
    • /
    • 1999
  • The major subject of this paper is to develop the concept fur a Korea high speed train system and recommend to train configuration. High speed train configurations are basically concerned traction power(train configurations with concentrated; CPT or distributed Power system: DPT) and train design(single car as compared with articulated bogies). The result of configuration, a advantages and disadvantaged were necessitated by different train configurations; -distributed underfloor power have an increased length for the seats by 15% as compared with the concentrated power trait - articulated trainsets are characterised by less of number of bogies and reduced values of mass, train resistance, noise and vibration. from the result, the optimized train concept combining high seat capacity per train length with low weight and train resistance is 400m long, single -floor train composed of two symmetrically arranged half trainsets. Therefore, at this work recommended distributed train system However, the final decision of Korea high speed train configuration was concentrated power train and articulated bogie system. The configuration of trainset was 20cars included 2 power cars, 4 motorized cars and 14 trailer cars.

  • PDF

A Frequency Selection Algorithm for Power Consumption Minimization of Processor in Mobile System (이동형 시스템에서 프로세서의 전력 소모 최소화를 위한 주파수 선택 알고리즘)

  • Kim, Jae Jin;Kang, Jin Gu;Hur, Hwa Ra;Yun, Choong Mo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2008
  • This paper presents a frequency selection algorithm for minimization power consumption of processor in Mobile System. The proposed algorithm has processor designed low power processor using clock gating method. Clock gating method has improved the power dissipation by control main clock through the bus which is embedded clock block applying the method of clock gating. Proposed method has compared power consumption considered the dynamic power for processor, selected frequency has considered energy gain and energy consumption for designed processor. Or reduced power consumption with decreased processor speed using slack time. This technique has improved the life time of the mobile systems by clock gating method, considered energy and using slack time. As an results, the proposed algorithm reduce average power saving up to 4% comparing to not apply processor in mobile system.

Large-scale AC/DC EMT Level System Simulations by a Real Time Digital Simulator (RTDS) in KEPRI-KEPCO

  • Park, In Kwon;Lee, Jaegul;Song, Jiyoung;Kim, Yonghak;Kim, Taekyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2017
  • Recently, the Korea Enhanced Power system Simulator (KEPS) was upgraded with new processor cards and various peripheral devices. The purpose of the upgrade is for the large-scale AC/DC simulation studies for different purposes such as FACTS, PMU applications, and SPS. The need for such study is now growing in KEPCO network. Frequently, traditional ways of performing the necessary study had been found to be less adequate for guiding the key decisions in the company. Therefore, the growing needs, as well as the revealed inadequacy of the traditional system studies, had been attributing to the momentum for the upgrade project. This paper explains the details of the upgrade project. As an example of presenting the effectiveness of the upgraded RTDS system in KEPRI-KEPCO, a large-scale AC/DC real time simulation case which includes the entire Korean network and a planned MMC-HVDC system is introduced.

A Study on Efficient Calculation of Effective Reactive Power Reserves Using Sensitivity Analysis

  • Bae, Moonsung;Lee, Byongjun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1689-1696
    • /
    • 2017
  • In recent academic and industrial circles of the Republic of Korea, the securement of available reactive power reserve against the line faults is at issue. Thus, simulations have been performed for the securing of effective reactive power reserve (effective Q) to prepare for the line faults and improve reactive power monitoring and control methods. That is, a research has been conducted for the fast-decoupled Newton-Raphson method. In this study, a method that distinguishes source and sink regions to carry out faster provision of information in the event of line fault has been proposed. This method can perform quantification with the formula that calculates voltage variations in the line flow. The line flow and voltage changes can be easily induced by the power flow calculation performed every second in the operation system. It is expected that the proposed method will be able to contribute to securement of power system stability by securing efficient reactive power. Also, the proposed method will be able to contribute to prepare against contingencies effectively. It is not easy to prepare quickly for the situation where voltage drops rapidly due to the exhaustion of reactive power source by observing voltage information only. This paper's simulation was performed on the large scale Korean power system in steady state.

A Study on Verification of PowerRail based on Voltage Drop under Extended Feeding Condition (연장급전 전압강하 계산을 위한 전기철도 급전 시뮬레이터의 검증에 관한 연구)

  • Kim, Joorak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.331-337
    • /
    • 2015
  • The power flow analysis of electrified railway is required complicated calculation, because of variable load. Train runs trough rail supplied by electric power therefore, the load value in electrified railway system fluctuates along time. The power flow algorithm in electrified railway system is different from general power system, and the power flow simulation is peformed by the particular simulation software. Powerail is simulation software for analysis of traction power supply system developed by KRRI, in 2008. This consists of load forecasting module, including TPS and time scheduling, and power flow module. This software was verified by measured current under normal feeding condition, however, has not been verified by voltage on the condition of extended feeding. This paper presents the verification of PowerRail based on voltage drop under extended feeding condition. This is performed by comparing simulation result with field test. Field test and simulation is done in commercial railway line.

Implementation of a Photovoltaic System Simulator for Interconnecting with Bipolar ±750V DC distribution Grid (바이폴 ±750 직류 배전망 연계용 태양광 발전 시뮬레이터 구현)

  • Kim, Tae-Hoon;Kim, Seok-Woong;Cho, Jin-Tae;Kim, Ju-Yong;Jung, Jae-Seung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1800-1805
    • /
    • 2016
  • The micro-grid designed as bipolar ${\pm}750V$ low-voltage DC power distribution system demonstrated by KEPRI, demands interconnection of a number of small decentralized power source including variable renewable generator. Therefore, variable researches for the influence of interconnection with the bipolar typed DC grid and these variable power sources are required for superior quality of power distribution. Renewable power generation simulators for the bipolar ${\pm}750V$ low-voltage DC power distribution system are necessary for such researches. In this paper, we carry out a research on the photovoltaic simulator that be actually able to interconnect with a bipolar ${\pm}750V$ low-voltage micro-grid. Simulator for this research is not only able to simulate photovoltaic generation according to weather informations and PV modules characteristics, but also contribute to stabilization of bipolar ${\pm}750V$ low-voltage of the system. Therefore, the simulator was designed to develop a system that can situationally respond to variable control algorithms such as the MPPT control, droop control, EMS power control, etc.

Transient Stability Enhancement of Power System by Using Energy Storage System (풍력터빈 발전기가 연계된 전력계통에서 에너지저장시스템이 과도안정도에 미치는 영향)

  • Seo, Gyu-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.592-597
    • /
    • 2019
  • A conventional method to improve transient stability in power system is the use of reactive power compensation devices such as STATCOM and SVC. However, this traditional method cannot prevent a rapid voltage collapse brought on by motors stalling due to system fault. On the other hand, ESS(Energy Storage System) provides fast-acting, flexible reactive and active power control. The fast active power compensation with energy storage system plays a significant role in transient stability enhancement after a major fault of power system. In this paper, transient stability enhancement method by using energy storage system is proposed for the power system including a dynamic load such as large motor. The effectiveness of energy storage system compared to conventional devices in enhancing transient stability of power system is presented. The results of simulations show that the simultaneous injection of active and reactive power can enhance more effectively transient stability.

Reliability analysis for substation based on the failure rate data the facilities (설비의 고장을 데이터를 이용한 변전소 신뢰도 분석 연구)

  • Lee, Y.H.;Baek, D.H.;Jang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.29-31
    • /
    • 2006
  • The most crucial requirement of a power system is o supply quality electric energy to customers without interrution. This problem is directly related to reliability of power system. Reliability assessment of power system has been an important topic for the past several decades. This paper deals with reliability assessment of a 154kV power substation n KEPCO. In his paper, exponential distribution is used to calculate reliablity index. The failure rate data that are utilited for reliablity index based on the realistic system. Also, FTA(Fault Tree Analysis) is used to compute substation reliablity

  • PDF