In this study, an intelligent scheduling with hybrid architecture, which integrates expert system and neural network, is proposed. Neural network is trained with the data acquired from simulation model of FMC to obtain the knowledge about the relationship between the state of the FMC and its best dispatching rule. Expert system controls the scheduling of FMC by integrating the output of neural network, the states of FMS, and user input. By applying the hybrid system to a scheduling problem, the human knowledge on scheduling and the generation of non-logical knowledge by machine teaming, can be processed in one scheduler. The computer simulation shows that comparing with MST(Minimum Slack Time), there is a little increment in tardness, 5% growth in flow time. And at breakdown, tardness is not increased by expert system comparing with EDD(Earliest Due Date).
International Journal of Fuzzy Logic and Intelligent Systems
/
제8권4호
/
pp.254-259
/
2008
Uncertainty of result of context awareness always exists in any context-awareness computing. This falling-off in accuracy of context awareness result is mostly caused by the imperfectness and incompleteness of sensed data, because of this reasons, we must improve the accuracy of context awareness. In this article, we propose a novel approach to model the uncertain context by using ontology and context reasoning method based on Bayesian Network. Our context aware processing is divided into two parts; context modeling and context reasoning. The context modeling is based on ontology for facilitating knowledge reuse and sharing. The ontology facilitates the share and reuse of information over similar domains of not only the logical knowledge but also the uncertain knowledge. Also the ontology can be used to structure learning for Bayesian network. The context reasoning is based on Bayesian Networks for probabilistic inference to solve the uncertain reasoning in context-aware processing problem in a flexible and adaptive situation.
This paper compared four knowledge acquisition methods (namely, neural network, case-based reasoning, discriminant analysis, and covariance structure modeling) for allergic rhinitis. The data were collected from 444 patients with suspected allergic rhinitis who visited the Otorlaryngology Deduring 1991-1993. Among four knowledge acquisition methods, the discriminant model had the best overall diagnostic capability (78%) and the neural network had slightly lower rate(76%). This may be explained by the fact that neural network is essentially non-linear discriminant model. The discriminant model was also most accurate in predicting allergic rhinitis (88%). On the other hand, the CSM had the lowest overall accuracy rate (44%) perhaps due to smaller input data set. However, it was most accuate in predicting non-allergic rhinitis (82%).
Recently, the military need more various education and training because of the increasing necessity of various operation. But the education and training of the military has the various difficulties such as the limitations of time, space and finance etc. In order to overcome the difficulties, the military use Defense Modeling and Simulation(DM&S). Although the participants in training has the empirical knowledge from education and training based on the simulation, the empirical knowledge is not shared because of particular characteristics of military such as security and the change of official. This situation obstructs the improving effectiveness of education and training. The purpose of this research is the systematizing and analysing the empirical knowledge using text mining and network analysis to assist the sharing of empirical knowledge. For analysing texts or documents as the empirical knowledge, we select the text mining and network analysis. We expect our research will improve the effectiveness of education and training based on simulation of DM&S.
For efficient interaction between humans and robots, robots should be able to understand the meaning and intention of human behaviors as well as recognize them. This paper proposes an interactive human intention reading method in which a robot develops its own knowledge about the human intention for an object. A robot needs to understand different human behavior structures for different objects. To this end, this paper proposes a hierarchical behavior knowledge network that consists of behavior nodes and directional edges between them. In addition, a human intention reading algorithm that incorporates reinforcement learning is proposed to interactively learn the hierarchical behavior knowledge networks based on context information and human feedback through human behaviors. The effectiveness of the proposed method is demonstrated through play-based experiments between a human and a virtual teddy bear robot with two virtual objects. Experiments with multiple participants are also conducted.
스마트 디바이스의 급격한 증가와 함께 사용자의 SNS(Social Network Service) 이용률도 급격하게 증가하게 되었다. 이로 인해 사용자들의 웹에 대한 접근성도 증가하면서, 데이터의 양도 기하급수적으로 증가하는 결과를 초래하였다. 이런 엄청난 양의 빅 데이터를 통해 획일적인 검색을 통한 정보 제공이 아닌, 사용자 맞춤형 지식 제공을 위한 연구의 필요성이 높아지고 있다. 이러한 지식 서비스를 제공하기 위해서는 사용자에 의해 수집된 데이터를 분석하고 평가하는 모델이 필요하다. 이에 본 논문에서는 스마트폰을 활용하여 40명의 데이터를 수집하여 이동정보와 장소를 추측 하고, 정답 셋을 구성하여 데이터의 평가를 할 수 있는 모델에 대한 연구를 수행 하였다.
지능형 교수 시스템(ITS: Intelligent Tutoring System)이 기존의 CAI의 제한적 기능을 극복하고, 내장한 지식베이스에 의해 다양한 학습자들의 변인들을 고려한 개별화된 학습 환경을 제공하지만, 교육현장에는 교수내용지식 표현 방법의 부재와 투자 비용의 비효율성으로 인하여 실제적인 개발물은 전무한 상태이다. 이러한 문제점을 해소하기 위하여 ITS에서의 지식표현 기법과 구축된 지식베이스의 재사용에 대한 연구가 필요하다. 교수내용지식의 특성을 고려하여 본 연구에서는 기존의 신경논리망의 한계점을 해결할 수 있도록 지식의 다중 결합체 구성, 이를 이용한 학습의 맥락 설명을 연구의 대상으로 삼았다. 또한 형성된 지식결합체는 군집화하여 지식베이스 객체로 사용하고, 결합체의 자기 학습에 의해 적응적인 지식베이스 객체로의 성장 가능성을 제고한다. 따라서 본 연구에서는 신경논리망의 논리추론, 그리고 인지구조에서 노드의 위상적 불변성을 근거로, 교수내용지식과 객체지향적 개념이 포함된 '확장된 개념의 신경논리망(X-Neuronet: eXtended Neural Logic Network)'을 제안하고, 이 기법에 대한 타당성을 검증하였다. X-Neuronet은 표현의 대상이 되는 지식을 관성과 가변성을 가지는 방향성 결합체로 정의하고, 표현을 위한 기본 개념, 노드의 처리와 연산을 위한 논리연산자, 노드값과 가중치의 결정, 노드활성을 위한 전파 규칙 학습 알고리즘 등을 제공한다.
International Journal of Computer Science & Network Security
/
제22권10호
/
pp.262-270
/
2022
In the past two decades, there has been an increasing interest in project knowledge management, as knowledge is a crucial resource for project management success. Knowledge capture and sharing are two effective project management practices. Capturing and sharing project knowledge has become more efficient due to technological advances. Nevertheless, present technologies face several technical, functional, and usage obstacles and constraints. Thus, Blockchain technology might provide promising answers, yet, there is still a dearth of understanding regarding the technology's proper and practical application. Consequently, the goal of this study was to fill the gap in the literature about the adoption of Blockchain technology and to investigate the project stakeholders' acceptance and willingness to utilize the technology for capturing and sharing project knowledge. Due to this inquiry's exploratory and inductive characteristics, qualitative research methodology was used, namely the Grounded Theory research approach. Accordingly, eighteen in-depth, semi-structured interviews were conducted to collect the data. Concurrent data collection and analysis were undertaken, with findings emerging after three coding steps. Four influencing factors and one moderating factor were identified as affecting users' acceptance of Blockchain technology for capturing and sharing project knowledge. Consequently, the results of the study aimed to fill a gap in the existing literature by undertaking a comprehensive analysis of the unrealized potential of Blockchain technology to improve knowledge capture and sharing in the project management environment.
본 논문에서는 생성 모델을 이용한 데이터 프리 양자화에서 발생할 수 있는 지식 격차를 줄이기 위하여 BAG (Bit-width Aware Generator)와 채널 어텐션 기반 중간 레이어 지식 증류를 제안한다. 생성 모델을 이용한 데이터 프리 양자화의 생성자는 오직 원본 네트워크의 피드백에만 의존하여 학습하기 때문에, 양자화된 네트워크의 낮은 bit-width로 인한 감소된 수용 능력 차이를 학습에 반영하지 못한다. 제안한 BAG는 양자화된 네트워크와 동일한 bit-width로 양자화하여, 양자화된 네트워크에 맞는 합성 이미지를 생성하여 이러한 문제를 완화한다. 또한, 양자화된 네트워크와 원본 모델 간의 지식 격차를 줄이는 것 역시 양자화에서 매우 중요한 문제이다. 이를 완화하기 위해 제안한 채널 어텐션 기반 중간 레이어 지식 증류는 학생 모델이 교사 모델로부터 어떤 채널에 더 집중해서 학습해야 하는지를 가르친다. 제안한 기법의 효율성을 보이기 위해, CIFAR-100에서 학습한 원본 네트워크를 가중치와 활성값을 각각 3-bit로 양자화하여 학습을 수행하였다. 그 결과 56.14%의 Top-1 Accuracy를 달성하였으며, 베이스라인 모델인 AdaDFQ 대비 3.4% 정확도를 향상했다.
본 연구는 고객 네트워크와 공급자 네트워크, 그리고 혁신성과간의 관계에서 T자형 기술의 역할을 규명하기 위해 수행되었다. 기업 간 협력관계를 효과적으로 관리하기 위해서 필요한 요소는 관련 선행 지식이다. 흡수역량의 전제조건은 새로운 지식을 인지하고, 완전히 이해하고 이를 적용하기 위해서 기업이 관련 선행 지식을 보유하고 있어야 한다는 것이다. 이러한 관점에서 T자형 기술은 새로운 관련 지식의 학습을 용이하게 해주며, 혁신 성과에 중요한 요소이다. 실증분석 결과 T자형 기술은 네트워크와 혁신성과 간의 중요한 매개변수로 작용하는 것으로 나타났다. 본 연구는 이를 통해 앞으로 고객 및 공급자와의 네트워크를 구축하고 적극적으로 활용하는 기업에게 어떻게 구축된 네트워크를 통한 효과를 극대화 할 수 있는지 그 방향성을 제시하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.