• Title/Summary/Keyword: Klebsiella sp

Search Result 76, Processing Time 0.019 seconds

Isolation and Identification of Spoilage Bacteria on Organic and Conventional Fresh Produce in Korea (국내에 시판되고 있는 유기농산물과 일반농산물의 부패미생물 분리 및 동정)

  • Jung, Soon-Young;Zheng, Ling;Jung, Kyu-Seok;Heu, Sunggi;Lee, Sun-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.4
    • /
    • pp.306-311
    • /
    • 2013
  • This study was conducted to investigate spoilage bacteria on organic and conventional fresh produce in Korea. Three samples (perilla leaf, cabbage, and romaine lettuce) of organic and conventional fresh produce were stored at $4^{\circ}C$ for 14 days and examined for spoilage bacteria on TSA. Isolated bacteria from organic and conventional fresh produces were identified using 16S rRNA sequencing method. Population of total aerobic bacteria on conventional perilla leaf, cabbage, and romaine lettuce were 7.59, 7.01, and $5.84{\log}_{10}CFU/g$, and populations of total aerobic bacteria were 6.72, 6.15, and $5.85{\log}_{10}CFU/g$, for organic perilla leaf, cabbage, and romaine lettuce, respectively. Major spoilage bacteria of organic and conventional fresh produces were similar however their levels were little different. For example, a major spoilage bacterium resulting the highest level on conventional perilla leaf was Stenotrophomonas maltophilia whereas that was Microbacterium sp. for organic produce. From these results, microflora or spoilage microorganism could be different depending on their cultivation types as conventional or organic produces and this information might be used for developing effective preservation method for different types of fresh produce.

Biosynthesis of Lactate-containing Polyhydroxyalkanoates in Recombinant Escherichia coli by Employing New CoA Transferases (재조합 대장균에서 새로운 코엔자임 에이 트랜스퍼레이즈를 이용한 젖산을 모노머로 함유한 폴리하이드록시알칸산 생산 연구)

  • Kim, You Jin;Chae, Cheol Gi;Kang, Kyoung Hee;Oh, Young Hoon;Joo, Jeong Chan;Song, Bong Keun;Lee, Sang Yup;Park, Si Jae
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • Several CoA transferases from Clostridium beijerinckii, C. perfringens and Klebsiella pneumoniae were examined for biosynthesis of lactate-containing polyhydroxyalkanoates (PHAs) in recombinant Escherichia coli XL1-Blue strain. The CB3819 gene and the CB4543 gene from C. beijerinckii, the pct gene from C. perfringens and the pct gene from K. pneumoniae, which encodes putative CoA transferase gene, respectively, was co-expressed with the Pseudomonas sp. MBEL 6-19 phaC1437 gene encoding engineered Pseudomonas sp. MBEL 6-19 PHA synthase 1 ($PhaC1_{Ps6-19}$) to examine its activity for the construction of key metabolic pathway to produce poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)]. The recombinant E. coli XL1-Blue expressing the phaC1437 gene and CB3819 gene synthesized poly(3-hydroxybutyrate) [P(3HB)] homopolymer to the P(3HB) content of 60.5 wt% when it was cultured in a chemically defined medium containing 20 g/L of glucose and 2 g/L of sodium 3-hydroxybutyrate. Expression of the phaC1437 gene and CB4543 gene in recombinant E. coli XL1-Blue also produced P(3HB) homopolymer to the P(3HB) content of 51.2 wt% in the same culture condition. Expression of the phaC1437 gene and the K. pneumoniae pct gene in recombinant E. coli XL1-Blue could not result in the production of PHAs in the same culture condition. However, the recombinant E. coli XL1-Blue expressing the phaC1437 gene and the C. perfringens gene could produce poly(3-hydroxybutyrate-co-lactate [P(86.4mol%3HB-co-13.7 mol%LA) up to the PHA content of 10.6 wt% in the same culture condition. Newly examined CoA transfereases in this study may be useful for the construction of engineered E. coli strains to produce PHA containing novel monomer such lactate.

ANTIBIOTIC SUSCEPTIBILITY OF BACTERIA ISOLATED FROM MAXILLARY SINUSITIS LESION (상악동염 병소 부위에서 세균의 분리 동정 및 항생제 감수성에 대한 연구)

  • Choi, Young-Og;Kim, Su-Gwan;Kim, Hak-Kyun;Kim, Yong-Jong;Choi, Dong-Kook;Kim, Mi-Kwang;Park, Soon-Nang;Kim, Min-Jung;Kook, Joong-Ki
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.5
    • /
    • pp.436-446
    • /
    • 2006
  • The purpose of this study was to isolate and identify the bacteria in chronic maxillary sinusitis (CMS) lesions from 3 patients and to determine the antimicrobial susceptibility of them against 10 antibiotics. One of them was odontogenic origin and the others were non-odontogenic origin. Pus samples were collected by needle aspiration from the lesions and examined by culture method. Bacterial culture was performed in three culture systems (anaerobic, CO2, and aerobic incubator). Identification of the bacteria was performed by 16S rRNA gene (16S rDNA) nucleotide sequencing method. To test the sensitivity of the bacteria isolated from the maxillary sinusitis lesions against seven antibiotics, penicillin G, amoxicillin, tetracycline, ciprofloxacin, cefuroxime, erythromycin, clindamycin, and vancomycin, minimum inhibitory concentration (MIC) was performed using broth dilution assay. Our data showed that enterobacteria such as Enterobacter aerogenes (30%), Klebsiella pneumoniae (25%), and Serratia marcescens (15%) were predominately isolated from the lesion of non-odontogenic CMS of senile patient (70 year old). Streptococcus spp. (40.3%), Actinomyces spp. (27.4%), P. nigrescens, M. micros, and P. anaerobius strains were isolated in the lesion of odontogenic CMS. In the lesion of non-odontogenic CMS, Streptococcus spp. (68.4%), Rothia spp. (13.2%), and Actinomyces sp. (10.5%) were isolated. The susceptibility pattern of 10 antibiotics was determined according to the host of the bacteria strains ratter than the kinds of bacterial species. Even though the number of CMS was limited as three, these results indicate that antibiotic susceptibility test must be accompanied with treatment of CMS. The combined treatment of two or more antibiotics is better than single antibiotic treatment in the presence of multidrug-resistant bacteria in the CMS lesions.

Isolation, Purification, and Characterization of Five Active Diketopiperazine Derivatives from Endophytic Streptomyces SUK 25 with Antimicrobial and Cytotoxic Activities

  • Alshaibani, Muhanna M.;MohamadZin, Noraziah;Jalil, Juriyati;Sidik, Nik Marzuki;Ahmad, Siti Junaidah;Kamal, Nurkhalida;Edrada-Ebel, RuAngelie
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1249-1256
    • /
    • 2017
  • In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as $cyclo-({\text\tiny{L}}-Val-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Leu-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Phe-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Val-{\text\tiny{L}}-Phe)$, and N-(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus, with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.

Simple and Rapid Evaluation System for Endosulfan Toxicity and Selection of Endosulfan Detoxifying Microorganism Based on Lumbricus rubellus (Lumbricus rubellus를 이용한 endosulfan의 간편, 신속 독성 평가 및 endosulfan 분해 미생물의 선별)

  • Sohn Ho-Yong;Kim Hong-Ju;Kum Eun-Joo;Lee Jung-Bok;Kwon Gi-Seok
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.108-113
    • /
    • 2006
  • To compensate the problems of chemical assay in detoxification of recalcitrant and a practical approach in selection of bioremediation bacteria, a simple and rapid toxicity evaluation system was constructed based on Lumbricus rubellus. Long term-culture and specific equipment are not necessary, and semi-quantitative analysis of toxicity at sub-lethal concentration is possible by measuring of dose-dependent increased yellowish secreted compounds. When the toxicity of endosulfan, its metabolites and structurally related chemicals were measured for 24 h, the results were coincided with previous reports. Toxicity was found in endosulfan, endosulfan sulfate, aldrin, and dieldrin, respectively. Rapid and economic selection of endosulfan-detoxifying bacteria was possible using our system. Klebsiella pneumoniae KE-1, K. oxytoca KE-8 and Pseudomonas sp. KS-2P, reported endosulfan degrading bacteria, ameliorated the endosulfan toxicity, whereas E. coli, B. subtilis and other bacteria failed to protect the toxicity of endosulfan in L. rubellus. Our results suggest that the constructed system is useful to selection of microorganism as well as toxicity evaluation against toxic recalcitrants.

The Role of Blind Protected Specimen Brushing (PSB) in Intubated Patients (기관 삽관 중인 환자에서 Blind Protected Specimen Brushing의 역할)

  • Yoo, Hee Seung;Hong, Ji Hyun;Yoon, Jang Uk;Eom, Kwang-Seok;Lee, Jae Myung;Kim, Chul Hong;Jang, Seung Hun;Kim, Dong Gyu;Lee, Myung Goo;Hyun, In Gyu;Jung, Ki-Suck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.1
    • /
    • pp.59-68
    • /
    • 2003
  • Background : In intubated patients, cultures of endotracheal aspirates (EA) are apt to contamination throughout the endotracheal tube. Therefore, the identification of etiologic agents via conventional EA cultures is not always reliable. In order to differentiate a pulmonary infection from a non-infectious disease, and to identify the true etiologic agent of acute pulmonary infection, blinded protected specimen brushing (PSB) was used, and its efficacy evaluated. Methods : In 51 intubated patients, with suspected pneumonia, blind PSB were performed, and the results compared with blood and EA cultures. A protected specimen brush was introduced through the endotracheal tube, and settled at the affected large bronchus. A specimen brush was introduced to the expected region using the blind method. The tip of the brush was introduced with an aseptic technique after vigorously mixed for 1 minute in $1cm^3$ of Ringer's lactate solution. The specimens were submitted for quantitative culture within 15 minutes, with a culture being regarded as positive if the colony forming units were above $10^3/ml$. Results : Of the 51 patients, 15 (29.4%) had community-acquired pneumonia (CAP), 27 (52.9%) hospital-acquired pneumonia (HAP) and 9 (17.6%) non-infectious diseases. The sensitivity and specificity of the quantitative PSB culture for the diagnosis of pneumonia were 52.4 and 88.9%, respectively. The sensitivity and specificity of EA were 78.6 and 77.8%, respectively. The blind PSB was superior to the EA for the identification of true etiologic agents. Of 53 episodes of 27 HAP patients, MRSA (Methicillin-resistant staphylococcus aureus) (41.5%) was the most common causative agent followed by Pseudomonas aeruginosa (15.1%), Klebsiella sp. (7.5%) and Acinetobacter sp. (7.5%). Conclusions : As a simple, non-invasive diagnostic modality, the blind PSB is a useful method for the differentiation of a pulmonary infection from non-infectious diseases and to identify the etiologic agents in intubated patients. A blind PSB can be performed without bronchoscopy, so is safer, more convenient and cost-effectiveness for patients where bronchoscopy can not be performed.