DOI QR코드

DOI QR Code

Isolation, Purification, and Characterization of Five Active Diketopiperazine Derivatives from Endophytic Streptomyces SUK 25 with Antimicrobial and Cytotoxic Activities

  • Alshaibani, Muhanna M. (Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia) ;
  • MohamadZin, Noraziah (Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia) ;
  • Jalil, Juriyati (Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia) ;
  • Sidik, Nik Marzuki (Faculty of Ago-based Industry, Universiti Malaysia Kelantan) ;
  • Ahmad, Siti Junaidah (Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia) ;
  • Kamal, Nurkhalida (Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde) ;
  • Edrada-Ebel, RuAngelie (Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde)
  • Received : 2016.08.13
  • Accepted : 2017.05.21
  • Published : 2017.07.28

Abstract

In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as $cyclo-({\text\tiny{L}}-Val-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Leu-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Phe-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Val-{\text\tiny{L}}-Phe)$, and N-(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus, with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.

Keywords

References

  1. Zin N, Loi C, Sarmin N, Rosli A. 2010. Cultivationdependent characterization of endophytic actinomycetes. Res. J. Microbiol. 5: 717-724. https://doi.org/10.3923/jm.2010.717.724
  2. Junaidah AS, Suhaini S, Sidek HM, Basri DF, Zin NM. 2015. Anti-methicillin resistant Staphylococcus aureus activity and optimal culture condition of Streptomyces sp. SUK 25. Jundishapur J. Microbiol. 8: 1-7.
  3. Alshaibani MM, Jalil J, Sidik NM, Edrada-Ebel R, Zin NM. 2016. Isolation and characterization of cyclo-(tryptophanylprolyl) and chloramphenicol from Streptomyces sp. SUK 25 with antimethicillin-resistant Staphylococcus aureus activity. Drug Des. Devel. Ther. 10: 1817-1827.
  4. Fenical W. 1993. Chemical studies of marine bacteria: developing a new resource. Chem. Rev. 93: 1673-1683. https://doi.org/10.1021/cr00021a001
  5. Stierle A, Cardellina Ii J, Singleton F. 1988. A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis. Experientia 44: 1021-1021. https://doi.org/10.1007/BF01939910
  6. Bugni TS, Ireland CM. 2004. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat. Prod. Rep. 21: 143-163. https://doi.org/10.1039/b301926h
  7. Huang R, Zhou X, Xu T, Yang X, Liu Y. 2010. Diketopiperazines from marine organisms. Chem. Biodivers. 7: 2809-2829. https://doi.org/10.1002/cbdv.200900211
  8. Gerets H, Tilmant K, Gerin B, Chanteux H, Depelchin B, Dhalluin S, et al. 2012. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol. Toxicol. 28: 69-87. https://doi.org/10.1007/s10565-011-9208-4
  9. Guillouzo A, Corlu A, Aninat C, Glaise D, Morel F, Guguen-Guillouzo C. 2007. The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem. Biol. Interact. 168: 66-73. https://doi.org/10.1016/j.cbi.2006.12.003
  10. Aninat C, Piton A, Glaise D, Le Charpentier T, Langouet S, Morel F, et al. 2006. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab. Dispos. 34: 75-83.
  11. Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, et al. 2002. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl. Acad. Sci. USA 99: 15655-15660. https://doi.org/10.1073/pnas.232137699
  12. Dobretsov SV, Qian P-Y. 2002. Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling 18: 217-228. https://doi.org/10.1080/08927010290013026
  13. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  14. MacIntyre L, Zhang T, Viegelmann C, Martinez IJ, Cheng C, Dowdells C, et al. 2014. Metabolomic tools for secondary metabolite discovery from marine microbial symbionts. Mar. Drugs 12: 3416-3448. https://doi.org/10.3390/md12063416
  15. Abdelmohsen UR, Cheng C, Viegelmann C, Zhang T, Grkovic T, Ahmed S, et al. 2014. Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins A and B from a marine sponge associated-Actinokineospora sp. EG49. Mar. Drugs 12: 1220-1244. https://doi.org/10.3390/md12031220
  16. Li X, Dobretsov S, Xu Y, Xiao X, Hung OS, Qian PY. 2006. Antifouling diketopiperazines produced by a deep-sea bacterium, Streptomyces fungicidicus. Biofouling 22: 201-208.
  17. Stark T, Hofmann T. 2005. Structures, sensory activity, and dose/response functions of 2,5-diketopiperazines in roasted cocoa nibs (Theobroma cacao). J. Agric. Food Chem. 53: 7222-7231. https://doi.org/10.1021/jf051313m
  18. Adamczeski M, Reed AR, Crews P. 1995. New and known diketopiperazines from the Caribbean sponge, Calyx cf. podatypa. J. Nat. Prod. 58: 201-208. https://doi.org/10.1021/np50116a007
  19. Rahman H. 2008. Unusual sesquiterpenes: gorgonenes and further bioactive secondary metabolites derived from marine and terrestrial bacteria. PhD Thesis. Gottingen University, Germany.
  20. Gebhardt K, Pukall R, Fiedler H-P. 2001. Streptocidins AD, novel cyclic decapeptide antibiotics produced by Streptomyces sp. Tu 6071. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. (Tokyo) 54: 428-433. https://doi.org/10.7164/antibiotics.54.428
  21. Smelcerovic AA, Schiebel M, Dordevic SM. 2002. The isolation of (6S, 9S)-cyclo (prolylvalyl) from marine actinomycete, by use of high speed contercurrent chromatography. J. Serbian Chem. Soc. 67: 27-30. https://doi.org/10.2298/JSC0201027S
  22. Rhee K-H. 2002. Isolation and characterization of Streptomyces sp. KH-614 producing anti-VRE (vancomycin-resistant enterococci) antibiotics. J. Gen. Appl. Microbiol. 48: 321-327. https://doi.org/10.2323/jgam.48.321
  23. Jiang Z, Boyd KG, Mearns-Spragg A, Adams DR, Wright PC, Burgess JG. 2000. Two diketopiperazines and one halogenated phenol from cultures of the marine bacterium, Pseudoalteromonas luteoviolacea. Nat. Prod. Lett. 14: 435-440. https://doi.org/10.1080/10575630008043781
  24. Rhee K-H. 2004. Cyclic dipeptides exhibit synergistic, broad spectrum antimicrobial effects and have anti-mutagenic properties. Int. J. Antimicrob. Agents 24: 423-427. https://doi.org/10.1016/j.ijantimicag.2004.05.005
  25. Furtado NA, Pupo MT, Carvalho I, Campo VL, Duarte MCT, Bastos JK. 2005. Diketopiperazines produced by an Aspergillus fumigatus Brazilian strain. J. Braz. Chem. Soc. 16: 1448-1453. https://doi.org/10.1590/S0103-50532005000800026
  26. de Carvalho MP, Abraham W-R. 2012. Antimicrobial and biofilm inhibiting diketopiperazines. Curr. Med. Chem. 19: 3564-3577. https://doi.org/10.2174/092986712801323243
  27. Huang R, Yan T, Peng Y, Zhou X, Yang X, Liu Y. 2014. Diketopiperazines from the marine sponge Axinella sp. Chem. Nat. Compd. 50: 191-193. https://doi.org/10.1007/s10600-014-0911-2
  28. Khedr AI, Mohamed GA, Orabi MA, Ibrahim SR, Yamada K. 2015. Staphylopeptide A, a new cyclic tetrapeptide from culture broth of Staphylococcus sp. Phytochem. Lett. 13: 11-14. https://doi.org/10.1016/j.phytol.2015.05.007
  29. Szabo M, Veres Z, Baranyai Z, Jakab F, Jemnitz K. 2013. Comparison of human hepatoma HepaRG cells with human and rat hepatocytes in uptake transport assays in order to predict a risk of drug induced hepatotoxicity. PLoS One 8: e59432. https://doi.org/10.1371/journal.pone.0059432
  30. Vazquez-Rivera D, Gonzalez O, Guzman-Rodriguez J, Diaz- Perez AL, Ochoa-Zarzosa A, Lopez-Bucio J, et al. 2015. Cytotoxicity of cyclodipeptides from Pseudomonas aeruginosa PAO1 leads to apoptosis in human cancer cell lines. Biomed. Res. Int. 2015: 197608.
  31. Cui CB, Usukata M, Kakeya H, Onose R, Okada G, Takahashi I, et al. 1996. Acetophthalidin, a novel inhibitor of mammalian cell cycle, produced by a fungus isolated from a sea sediment. J. Antibiot. (Tokyo) 49: 216-219. https://doi.org/10.7164/antibiotics.49.216
  32. Kondoh M, Usui T, Mayumi T, Osada H. 1998. Effects of tryprostatin derivatives on microtubule assembly in vitro and in situ. J. Antibiot. (Tokyo) 51: 801-804. https://doi.org/10.7164/antibiotics.51.801
  33. Folkes A, Brown SD, Canne LE, Chan J, Engelhardt E, Epshteyn S, et al. 2002. Design, synthesis and in vitro evaluation of potent, novel, small molecule inhibitors of plasminogen activator inhibitor-1. Bioorg. Med. Chem. Lett. 12: 1063-1066. https://doi.org/10.1016/S0960-894X(02)00078-1
  34. Martins MB, Carvalho I. 2007. Diketopiperazines: biological activity and synthesis. Tetrahedron 63: 9923-9932. https://doi.org/10.1016/j.tet.2007.04.105
  35. McCleland K, Milne P, Lucieto F, Frost C, Brauns S, Venter M, et al. 2004. An investigation into the biological activity of the selected histidine-containing diketopiperazines cyclo (His- Phe) and cyclo (His-Tyr). J. Pharm. Pharmacol. 56: 1143-1153. https://doi.org/10.1211/0022357044139
  36. Choi E, Park JS, Kim YJ, Jung JH, Lee J, Kwon H, et al. 2011. Apoptosis-inducing effect of diketopiperazine disulfides produced by Aspergillus sp. KMD 901 isolated from marine sediment on HCT116 colon cancer cell lines. J. Appl. Microbiol. 110: 304-313. https://doi.org/10.1111/j.1365-2672.2010.04885.x

Cited by

  1. Diversity and Applications of Endophytic Actinobacteria of Plants in Special and Other Ecological Niches vol.9, pp.None, 2017, https://doi.org/10.3389/fmicb.2018.01767
  2. Concepts and Methods to Access Novel Antibiotics from Actinomycetes vol.7, pp.2, 2017, https://doi.org/10.3390/antibiotics7020044
  3. Cyclo-( L -Phe- L -Pro), a Quorum-Sensing Signal of Vibrio vulnificus , Induces Expression of Hydroperoxidase through a ToxR-LeuO-HU-RpoS Signaling Pathway To Confer Res vol.86, pp.9, 2017, https://doi.org/10.1128/iai.00932-17
  4. Streptomycessp. MUM273b: A mangrove‐derived potential source for antioxidant and UVB radiation protectants vol.8, pp.10, 2017, https://doi.org/10.1002/mbo3.859
  5. Heterologous Expression of Daptomycin Biosynthetic Gene Cluster Via Streptomyces Artificial Chromosome Vector System vol.29, pp.12, 2017, https://doi.org/10.4014/jmb.1909.09022
  6. Bioactive Potential of Extracts of Labrenzia aggregata Strain USBA 371, a Halophilic Bacterium Isolated from a Terrestrial Source vol.25, pp.11, 2020, https://doi.org/10.3390/molecules25112546
  7. Mycotoxins from Fusarium proliferatum: new inhibitors of papain-like cysteine proteases vol.51, pp.3, 2020, https://doi.org/10.1007/s42770-020-00256-7
  8. Research progress on small peptides in Chinese Baijiu vol.72, pp.None, 2017, https://doi.org/10.1016/j.jff.2020.104081
  9. Profiling of gene expression in methicillin-resistant Staphylococcus aureus in response to cyclo-(l-Val-l-Pro) and chloramphenicol isolated from Streptomyces sp., SUK 25 reveals gene downregulation in vol.202, pp.8, 2017, https://doi.org/10.1007/s00203-020-01896-x
  10. Adaptation to Endophytic Lifestyle Through Genome Reduction by Kitasatospora sp. SUK42 vol.9, pp.None, 2021, https://doi.org/10.3389/fbioe.2021.740722
  11. Bioactive Natural Products in Actinobacteria Isolated in Rainwater From Storm Clouds Transported by Western Winds in Spain vol.12, pp.None, 2017, https://doi.org/10.3389/fmicb.2021.773095
  12. Antifungal Activity of 1,4-Dialkoxynaphthalen-2-Acyl Imidazolium Salts by Inducing Apoptosis of Pathogenic Candida spp. vol.13, pp.3, 2017, https://doi.org/10.3390/pharmaceutics13030312
  13. Enhanced Pharmaceutically Active Compounds Productivity from Streptomyces SUK 25: Optimization, Characterization, Mechanism and Techno-Economic Analysis vol.26, pp.9, 2017, https://doi.org/10.3390/molecules26092510
  14. Crocodylus porosus Gut Bacteria: A Possible Source of Novel Metabolites vol.26, pp.16, 2021, https://doi.org/10.3390/molecules26164999