Browse > Article
http://dx.doi.org/10.5352/JLS.2006.16.1.108

Simple and Rapid Evaluation System for Endosulfan Toxicity and Selection of Endosulfan Detoxifying Microorganism Based on Lumbricus rubellus  

Sohn Ho-Yong (Dept. of Food and Nutrition, Andong National University)
Kim Hong-Ju (Dept. of Food and Nutrition, Andong National University)
Kum Eun-Joo (Dept. of Food and Nutrition, Andong National University)
Lee Jung-Bok (The School of Bioresource Sciences, Andong National University)
Kwon Gi-Seok (The School of Bioresource Sciences, Andong National University)
Publication Information
Journal of Life Science / v.16, no.1, 2006 , pp. 108-113 More about this Journal
Abstract
To compensate the problems of chemical assay in detoxification of recalcitrant and a practical approach in selection of bioremediation bacteria, a simple and rapid toxicity evaluation system was constructed based on Lumbricus rubellus. Long term-culture and specific equipment are not necessary, and semi-quantitative analysis of toxicity at sub-lethal concentration is possible by measuring of dose-dependent increased yellowish secreted compounds. When the toxicity of endosulfan, its metabolites and structurally related chemicals were measured for 24 h, the results were coincided with previous reports. Toxicity was found in endosulfan, endosulfan sulfate, aldrin, and dieldrin, respectively. Rapid and economic selection of endosulfan-detoxifying bacteria was possible using our system. Klebsiella pneumoniae KE-1, K. oxytoca KE-8 and Pseudomonas sp. KS-2P, reported endosulfan degrading bacteria, ameliorated the endosulfan toxicity, whereas E. coli, B. subtilis and other bacteria failed to protect the toxicity of endosulfan in L. rubellus. Our results suggest that the constructed system is useful to selection of microorganism as well as toxicity evaluation against toxic recalcitrants.
Keywords
Bioremediation; endosulfan detoxification; Lumbricus rubellus; microplate assay; selection of microorganism; toxicity evaluation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ait-Aissa, S., P. Pandard, H. Magaud, A. P. Arrigo, E. Thybaud and J. M. Porcher. 2003. Evaluation of an in vitro hsp70 induction test for toxicity assessment of complex mixtures: comparison with chemical analyses and ecotoxicity tests. Ecotoxicol. Environ. Saf. 54, 92-104   DOI   ScienceOn
2 An, Y. J. 2005. Assessing soil ecotoxicity of methyl tert-butyl ether using earthworm bioassay; closed soil microcosm test for volatile organic compounds. Environ. Pollut. 134, 181-186   DOI   ScienceOn
3 Gillis, P. L., D. G. Dixon, U. Borgmann and T. B. Reynoldson. 2004. Uptake and depuration of cadmium, nickel, and lead in laboratory-exposed Tubifex tubifex and corresponding changes in the concentration of a metallothionein-like protein. Environ. Toxicol. Chem. 23, 76-85   DOI   ScienceOn
4 Kwon, G.-S., J.-E. Kim, T.-E. Kim, H.-Y. Sohn, S.-C. Koh, K.-S. Shin and D.-G. Kim. 2002. Klebsiella pneumoniae KE-1 degrades endosulfan without formation of the toxic metabolite, endosulfan sulfate. FEMS Miobiol. Lett. 215, 255-259   DOI
5 Kullman, S. W. and F. Matsumura. 1996. Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl. Environ. Microbiol. 62, 593-600
6 Na, Y. E., H. S. Bang, K. K. Kang, M. S. Han and Y. J. Ahn. 2005. Assessment of the effects of some insecticides on mortality of earthworm (Eisenia fetida). Korean J. Environ. Agr. 24, 289-294   과학기술학회마을   DOI   ScienceOn
7 Conder J. M. and R. P. Lanno. 2000. Evaluation of surrogate measures of cadmium, lead, and zinc bioavailability to Eisenia fetida. Chemosphere 41, 1659-1668   DOI   ScienceOn
8 Sutherland, T. D., I. Horne, M. J. Lacey, R. L. Harcourt, R. J. Russell and J. G. Oakeshott. 2000. Enrichment of an endosulfan-degrading mixed bacterial culture. Appl. Environ. Microbiol. 66, 2822-2828   DOI
9 Boyd, D. R., N. D. Sharma and C. C. R. Allen. 2001. Aromatic dioxygenase: molecular biocatalysis and applications. Curr. Opin. Biotechnol. 12, 564-573   DOI   ScienceOn
10 Bundy, J. G., D. J. Spurgeon, C. Svendsen, P. K. Hankard, J. M., Weeks, D. Osborn, J. C. Lindon and J. K. Nicholson. 2004. Environmental metabonomics: applying combination biomarker analysis in earthworms at a metal contaminated site. Ecotoxicology 13, 797-806   DOI
11 Rajaguru, P., S. Suba, M. Palanivel. and K. Kalaiselvi. 2003. Genotoxicity of a polluted river system measured using the alkaline comet assay on fish and earthworm tissues. Environ. Mol. Mutagen. 41, 85-91   DOI   ScienceOn
12 Grdisa, M., M. Popovic and T. Hrzenjak. 2004. Stimulation of growth factor synthesis in skin wounds using tissue extract (G-90) from the earthworm Eissenia foetida. Cell Biochem. Funct. 22, 373-378   DOI   ScienceOn
13 Awasthi, N., A. K. Singh, R. K. Jain, B. S. Khangarot and A. Kumar. 2003. Degradation and detoxification of endosulfan isomers by a defined co-culture of two Bacillus strains. Appl. Microbiol. Biotechnol. 62, 279-283   DOI
14 Suh, Y.-D. 2004. Biodegradation of the endosulfan by Sphingomonas wittichii RW1, J. Korea Soc. Environ. Administrat. 10, 287-294
15 Svendsen, C., D. J. Spurgeon, P. K. Hankard and J. M. Weeks. 2004. A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker? Ecotoxicol. Environ. Saf. 57, 20-29   DOI   ScienceOn
16 Lee, S.-E., J.-S. Kim, I.-R. Kennedy, J.-W. Park, G.-S. Kwon, S.-C. Koh and J.-E. Kim. 2003. Biotransformation of an organochlorine insecticide, endosulfan, by Anabaena species. J. Agric. Food Chem. 51, 1336-1340   DOI   ScienceOn
17 Sutherland, T. D., I. Horne, R. L. Harcourt, R. J. Russell and J. G. Oakeshott. 2002. Isolation and characterization of a Mycobacterium strain that metabolizes the insecticide endosulfan. J. Appl. Microbiol. 93, 380-389   DOI   ScienceOn
18 Sutherland, T. D., K. M. Weir, M. J. Lacey, I. Horne, R. J. Russell and J. G. Oakeshott. 2002. Enrichment of a microbial culture capable of degrading endosulphate, the toxic metabolite of endosulfan. J. Appl. Microbiol. 92, 541-548   DOI   ScienceOn
19 Goebel, H., S. Gorbach, W. Knauf, R. H. Rimpau and H. Huttenbach. 1982. Properties, effect, residues and analytics of the insecticide endosulfan. Residue Rev. 83, 1-122
20 Charrois, J. W., W. B. McGill and K. L. Froese. 2001. Acute ecotoxicity of creosote-contaminated soils to Eisenia fetida: a survival-based approach. Environ. Toxicol. Chem. 20, 2594-2603   DOI
21 Jung, H., W. Park, J. Lee, J. W. Yoo, E. Y. Kim and H. J. Chae. 2005. Toxicity test of biodiesel and biodiesel-derived neopentyl polyol ester lubricant oil base using earthworm. Korean J. Biotechnol. Bioeng. 20, 84-87   과학기술학회마을
22 Kaur, I., R. P. Mathur, S. N. Tandon and P. Dureja. 1998. Persistence of endosulfan (technical) in water and soil. Environ. Tech. 19, 115-119   DOI
23 Kwon, G.-S., H.-Y. Sohn, K-.S. Shin, E. Kim and B.-I. Seo. 2005. Biodegradation of the organochlorine insecticide, endosulfan, an the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8. Appl. Microbiol. Biotechnol. 67, 845-850   DOI
24 Ricketts, H. J., A. J. Morgan, D. J.. Spurgeon, P. Kille. 2004. Measurement of annetocin gene expression: a new reproductive biomarker in earthworm ecotoxicology. Ecotoxicol. Environ. Saf. 57, 4-10   DOI   ScienceOn
25 Sethunathan, N., M. Megharaj, Z. L. Chen, B. D. Williams, G. Lewis and R. Naidu. 2004. Algal degradation of a known endocrine disrupting insecticide, a-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. J. Agric. Food Chem. 52, 3030-3035   DOI   ScienceOn
26 Sohn, H.-Y., C.-S. Kwon, G.-S. Kwon, J.-B. Lee and E. Kim. 2004. Induction of oxidative stress by endosulfan and protective effect of lipid-soluble antioxidants against endosulfan-induced oxidative damage. Toxicol. Lett. 151, 357-365   DOI   ScienceOn