• Title/Summary/Keyword: Kirchhoff equation

Search Result 87, Processing Time 0.028 seconds

DMD based modal analysis and prediction of Kirchhoff-Love plate (DMD기반 Kirchhoff-Love 판의 모드 분석과 수치해 예측)

  • Shin, Seong-Yoon;Jo, Gwanghyun;Bae, Seok-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1586-1591
    • /
    • 2022
  • Kirchhoff-Love plate (KLP) equation is a well established theory for a description of a deformation of a thin plate under certain outer source. Meanwhile, analysis of a vibrating plate in a frequency domain is important in terms of obtaining the main frequency/eigenfunctions and predicting the vibration of plate. Among various modal analysis methods, dynamic mode decomposition (DMD) is one of the efficient data-driven methods. In this work, we carry out DMD based modal analysis for KLP where thin plate is under effects of sine-type outer force. We first construct discrete time series of KLP solutions based on a finite difference method (FDM). Over 720,000 number of FDM-generated solutions, we select only 500 number of solutions for the DMD implementation. We report the resulting DMD-modes for KLP. Also, we show how DMD can be used to predict KLP solutions in an efficient way.

Linear Approximation and Asymptotic Expansion associated to the Robin-Dirichlet Problem for a Kirchhoff-Carrier Equation with a Viscoelastic Term

  • Ngoc, Le Thi Phuong;Quynh, Doan Thi Nhu;Triet, Nguyen Anh;Long, Nguyen Thanh
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.4
    • /
    • pp.735-769
    • /
    • 2019
  • In this paper, we consider the Robin-Dirichlet problem for a nonlinear wave equation of Kirchhoff-Carrier type with a viscoelastic term. Using the Faedo-Galerkin method and the linearization method for nonlinear terms, the existence and uniqueness of a weak solution are proved. An asymptotic expansion of high order in a small parameter of a weak solution is also discussed.

Uniqueness Problem in Sound Field Reproduction (음장 재현에서의 유일성 문제)

  • Chang, Ji-Ho;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.916-919
    • /
    • 2008
  • This paper deals with a means to reproduce sound field by using Kirchhoff-Helmholtz integral equation. We control boundary value or generate sound sources on the boundary in order to control the sound field as we want. The method assumes that there is a unique relation between sound field and its boundary should. Otherwise the reproduced sound field is different from what we want generate; the original sound field. Half-infinite sound field and finite sound field are considered and whether the uniqueness is hold or not and how the reproduced field is generated are discussed in each case.

  • PDF

A Method to Arrange Absorptive Materials on Walls for Effective Interior Noise Control (효율적 실내 소음 저감을 위한 흡음재 분포 위치 결정 방법)

  • Cho, Sung-Ho;Kim, Yang-Hann
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1702-1707
    • /
    • 2003
  • Absorptive material arrangement method for effective interior noise control is proposed. Sound field with arbitrary boundary condition is formulated by Kirchhoff-Helmholtz integral equation. A simple example such as a rectangular cavity will present physical meaning between changing boundary condition and control of sound field. The effect of changing boundary condition is expressed in modal admittance. From this formulation, an admittance map is presented. The admittance map is the figure to represent position where absorptive material is attached. The admittance map can be assigned to each resonant frequency. There, however, may be common area of those maps. Then, frequency robust arrangement of absorptive material in noise control will be presented.

  • PDF

Effect of Boundary Condition Changes on the Sound Field (경계 조건이 음장에 미치는 영향)

  • 조성호;김양한;최성훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1317-1322
    • /
    • 2001
  • What changes in the eigen values and eigen functions are produced if the boundary surface S is no longer rigid but has a specific acoustic admittance which may vary from point to point on S. In this paper, changes in eigen values and eigen functions are derived by using Kirchhoff-Helmholtz integral equation. And acoustic potential energy, which is representative measure describing the physical quantity in cavity, is defined. Acoustic potential energy can be divided into primary one and secondary one. Primary one is the acoustic potential energy through unchanged eigen functions, and secondary one is through changed eigen functions. Using these two term, we can find the eigenvalue problem, which gives the control performance when the boundary condition is changed.

  • PDF

Prestack Reverse Time Depth Migration Using Monochromatic One-way Wave Equation (단일 주파수 일방향 파동방정식을 이용한 중합 전 역 시간 심도 구조보정)

  • Yoon Kwang Jin;Jang Mi Kyung;Suh Jung Hee;Shin Chang Soo;Yang Sung Jin;Ko Seung Won;Yoo Hae Soo;Jang Jae Kyung
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.2
    • /
    • pp.70-75
    • /
    • 2000
  • In the seismic migration, Kirchhoff and reverse time migration are used in general. In the reverse time migration using wave equation, two-way and one-way wave equation are applied. The approach of one-way wave equation uses approximately computed downward continuation extrapolator, it need tess amounts of calculations and core memory in compared to that of two-way wave equation. In this paper, we applied one-way wave equation to pre-stack reverse time migration. In the frequency-space domain, forward propagation of source wavefield and back propagration of measured wavefield were executed by using monochromatic one-way wave equation, and zero-lag cross correlation of two wavefield resulted in the image of subsurface. We had implemented prestack migration on a massively parallel processors (MPP) CRAYT3E, and knew the algorithm studied here is efficiently applied to the prestck migration due to its suitability for parallelization.

  • PDF

ON SOLVABILITY OF A CLASS OF DEGENERATE KIRCHHOFF EQUATIONS WITH LOGARITHMIC NONLINEARITY

  • Ugur Sert
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.565-586
    • /
    • 2023
  • We study the Dirichlet problem for the degenerate nonlocal parabolic equation ut - a(||∇u||2L2(Ω))∆u = Cb ||u||βL2(Ω) |u|q(x,t)-2 u log |u| + f in QT, where QT := Ω × (0, T), T > 0, Ω ⊂ ℝN, N ≥ 2, is a bounded domain with a sufficiently smooth boundary, q(x, t) is a measurable function in QT with values in an interval [q-, q+] ⊂ (1, ∞) and the diffusion coefficient a(·) is a continuous function defined on ℝ+. It is assumed that a(s) → 0 or a(s) → ∞ as s → 0+, therefore the equation degenerates or becomes singular as ||∇u(t)||2 → 0. For both cases, we show that under appropriate conditions on a, β, q, f the problem has a global in time strong solution which possesses the following global regularity property: ∆u ∈ L2(QT) and a(||∇u||2L2(Ω))∆u ∈ L2(QT ).

An Analysis of the Flow Field and Radiation Acoustic Field of Centrifugal Fan with Wedge -The Prediction of the Scattered Sound Field- (웨지가 있는 원심 임펠러의 유동장 및 방사 음향장 해석(II) -원심홴의 산란 음향장 예측-)

  • Lee, Deok-Ju;Jeon, Wan-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1165-1174
    • /
    • 2001
  • The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the acoustic pressure field of a centrifugal fan. If the fan is operating at the free field without the casing, the acoustic analogy is a good method to predict the acoustic of the fan. But, the casing gives a dominant effect to the radiated sound field and the scattering effect of casing should be considered. So, in this paper the Kirchhoff-BEM is developed, which can consider the scattering effect of the rigid body. In order to consider the scattering and diffraction effects owing to the casing, BEM is introduced. The source of BEM is newly developed, so the sound field of the centrifugal fan can be obtained. In order to compare the predicted one with experimental data, a centrifugal impeller and a wedge are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound. The radiated acoustic field shows the diffraction and scattering effects of the wedge clearly.

Duct Effects on rotor noise in radiation (덕트가 로터 소음 방사에 미치는 영향)

  • Choi, Han-Lim;Chung, Ki-Hoon;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.938-941
    • /
    • 2004
  • Sound generation and radiation from the duct-rotor system are calculated numerically. The wake geometries of a two-bladed rotor are calculated by using a time-marching fiee-wake method without a non-physical model of the far wake. Acoustic free field due to a rotating rotor is obtained by Lowson's equation. Using Kirchhoff source, rotating sources are modeled as stationary ones and can be inserted in the thin body boundary element method. The Kirchhoff source is validated through calculation of acoustic pressure due to a rotating point force. The thin body boundary element method (thin body BEM) is validated through calculation of acoustic radiation of ducted dipole. Using Kirchhoff source and thin body BEM, acoustic radiation of a ducted rotating source is calculated. Acoustic shielding is observed by inserting a duct and shows different phenomena at each major frequency. Acoustic radiation of a real duct-rotor system is also calculated using this method and the ducted acoustic field is significantly different from rotor only.

  • PDF

Numerical Method for Prediction of Air-pumping Noise by Car Tyre (자동차 타이어의 Air-Pumping소음 예측을 위한 수치적 기법)

  • Kim, Sungtae;Jeong, Wontae;Cheong, Cheolung;Lee, Soogab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.788-798
    • /
    • 2005
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a Piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory This paper describes an approach to predict the air-pumping noise of a car tyre with CFD/Kirchhoff integral method. The tyre groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired.'rhese unsteady flow data are used as a air-pumping source in the next CFD calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of simply modeled car tyre and through the predicted results, the influence of nonlinear effect on air-pumping noise propagation is investigated.