Browse > Article
http://dx.doi.org/10.5666/KMJ.2019.59.4.735

Linear Approximation and Asymptotic Expansion associated to the Robin-Dirichlet Problem for a Kirchhoff-Carrier Equation with a Viscoelastic Term  

Ngoc, Le Thi Phuong (University of Khanh Hoa)
Quynh, Doan Thi Nhu (Department of Fundamental sciences, Ho Chi Minh City University of Food Industry)
Triet, Nguyen Anh (Department of Mathematics, University of Architecture of Ho Chi Minh City)
Long, Nguyen Thanh (Department of Mathematics and Computer Science, VNUHCM - University of Science)
Publication Information
Kyungpook Mathematical Journal / v.59, no.4, 2019 , pp. 735-769 More about this Journal
Abstract
In this paper, we consider the Robin-Dirichlet problem for a nonlinear wave equation of Kirchhoff-Carrier type with a viscoelastic term. Using the Faedo-Galerkin method and the linearization method for nonlinear terms, the existence and uniqueness of a weak solution are proved. An asymptotic expansion of high order in a small parameter of a weak solution is also discussed.
Keywords
Faedo-Galerkin method; linear recurrent sequence; Robin-Dirichlet conditions; asymptotic expansion in a small parameter;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. L. Lions, On some questions in boundary value problems of mathematical physics, Contemporary developments in continuum mechanics and partialdifferential equations, 284-346, North-Holland Math. Stud. 30, North-Holland, Amsterdam-New York, 1978.
2 N. T. Long, Asymptotic expansion of the solution for nonlinear wave equation with the mixed homogeneous conditions, Nonlinear Anal., 45(2001), 261-272.   DOI
3 N. T. Long, On the nonlinear wave equation $u_{tt}$ - $B(t,\;{\paralle}u{\paralle}^2\;,\;{\paralle}u_x{\paralle}^2)u_{xx}$ = $f(x,\;t,\;u,\;u_x,\;u_t,\;{\paralle}u{\paralle}^2\;,\;{\paralle}u_x{\paralle}^2)$ associated with the mixed homogeneous conditions, J. Math. Anal. Appl., 306(1)(2005), 243-268.   DOI
4 N. T. Long, A. P. N. Ding and T. N. Diem, Linear recursive schemes and asymptotic expansion associated with the Kirchhoff-Carrier operator, J. Math. Anal. Appl., 267(1)(2002), 116-134.   DOI
5 N. T. Long and L. X. Truong, Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition, Nonlinear Anal., 67(3)(2007), 842-864.   DOI
6 L. A. Medeiros, On some nonlinear perturbation of Kirchhoff-Carrier operator, Mat. Apl. Comput., 13(1994), 225-233.
7 L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part one, J. Comput. Anal. Appl., 4(2)(2002), 91-127.   DOI
8 L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part two, J. Comput. Anal. Appl., 4(3)(2002), 211-263.   DOI
9 G. P. Menzala, On global classical solutions of a nonlinear wave equation, Applicable Anal., 10(1980), 179-195.   DOI
10 S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelsatic wave equation, Math. Nachr., 260(2003), 58-66.   DOI
11 M. Milla Miranda and L. P. San Gil Jutuca, Existence and boundary stabilization of solutions for the Kirchhoff equation, Comm. Partial Differential Equations, 24(9-10)(1999), 1759-1800.   DOI
12 L. T. P. Ngoc, L. N. K. Hang and N. T. Long, On a nonlinear wave equation associated with the boundary conditions involving convolution, Nonlinear Anal., 70(11)(2009), 3943-3965.   DOI
13 L. T. P. Ngoc, N. A. Triet and N. T. Long, On a nonlinear wave equation involving the $-{\frac{\partial}{{\partial}x}}({\mu}(x,\;t,\;u,\;{\paralle}u_x{\paralle}^2)u_x)$ : Linear approximation and asymptotic expansion of solution in many small parameters, Nonlinear Anal. Real World Appl., 11(4)(2010), 2479-2501.   DOI
14 T. N. Rabello, M. C. C. Vieira, C. L. Frota and L. A. Medeiros, Small vertical vibrations of strings with moving ends, Rev. Mat. Complut., 16(2003), 179-206.
15 J. Y. Park and J. J. Bae, On coupled wave equation of Kirchhoff type with nonlinear boundary damping and memory term, Appl. Math. Comput., 129(2002), 87-105.   DOI
16 J. Y. Park, J. J. Bae and I. H. Jung, Uniform decay of solution for wave equation of Kirchhoff type with nonlinear boundary damping and memory term, Nonlinear Anal., 50(2002), 871-884.   DOI
17 S. I. Pohozaev, On a class of quasilinear hyperbolic equation, Math. USSR. Sb., 25(1975), 145-158.   DOI
18 S. H. Park, Stability for a viscoelastic plate equation with p-Laplacian, Bull. Korean Math. Soc. 52(3)(2015), 907-914.   DOI
19 M. L. Santos, J. Ferreira, D. C. Pereira and C. A. Raposo, Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary, Nonlinear Anal., 54(2003), 959-976.   DOI
20 R. E. Showater, Hilbert space methods for partial differential equations, Electronic Monographs J. Differential Equations, San Marcos, TX, 1994.
21 L. Jie and L. Fei, Blow-up of solution for an integrodifferential equation with arbitrary positive initial energy, Bound. Value Probl., (2015), 2015:96, 10 pp.
22 G. F. Carrier, On the nonlinear vibration problem of the elastic string, Quart. Appl. Math., 3(1945), 157-165.   DOI
23 M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Differential Equations, 6(6)(2001), 701-730.
24 M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differential Equations, (2002), No. 44, 1-14.
25 M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6(5)(2004), 705-731.   DOI
26 E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, 1955.
27 Y. Ebihara, L. A. Medeiros and M. M. Miranda, Local solutions for a nonlinear degenerate hyperbolic equation, Nonlinear Anal., 10(1986), 27-40.   DOI
28 M. Hosoya and Y. Yamada, On some nonlinear wave equations I : Local existence and regularity of solutions, J. Fac. Sci. Univ. Tokyo. Sect. IA Math., 38(1991), 225-238.
29 G. R. Kirchhoff, Vorlesungen uber mathematische physik: Mechanik, Teuber, Leipzig, 1876.
30 N. A. Larkin, Global regular solutions for the nonhomogeneous Carrier equation, Math. Probl. Eng., 8(2002), 15-31.   DOI
31 I. LasieckaI and J, Ong, Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation, Comm. Partial Differential Equations, 24(11-12)(1999), 2069-2107.   DOI
32 J. L. Lions, Quelques methodes de resolution des problems aux limites non-lineares, Dunod; Gauthier-Villars, Paris, 1969.