• Title/Summary/Keyword: Kinetic energy (K)

Search Result 1,187, Processing Time 0.029 seconds

The Compression Ratio Change Characteristics of Engine Horse Power Characteristics (압축비에 의한 엔진 출력 변화 특성)

  • Yang, Hyun-Soo;Lim, Ju-Hun
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.2
    • /
    • pp.85-94
    • /
    • 2008
  • The object of this study is to investigate the penetration characteristics according to the change of stacking sequences and curvature radius in the composite laminated shell. They are staked to [02/902]S and [0/902/0]s, their interlaminar number are two and four. We are manufactured to composite laminated shells with various curvature radius. Curvature radius of composite shell is 100, 150, 200mm and ${\infty}$(it's meaning flat-plate). In general, kinetic energy after impact-kinetic energy before impact increased linearly in all specimens. Absorbed energy increased linearly as the curvature increased, and absorbed energy of [02/902]S specimen, which is small interlaminar number, was higher than [0/902/0]s specimen.

The Effect of Density Gradient on the Self-modulated Laser Wakefield Acceleration with Relativistic and Kinetic Effects

  • Yoo, Seung-Hoon;Kim, Jae-Hoon;Kim, Jong-Uk;Seo, Ju-Tae;Hahn, Sang-June
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.42-47
    • /
    • 2009
  • The propagation of an intense laser pulse through an upward density-gradient plasma in a self-modulated laser wakefield acceleration (SM-LWFA) is investigated by using particle-in-cell (PIC) simulations. In the fully relativistic and kinetic PIC simulations, the relativistic and kinetic effects including Landau damping enhance the electron dephasing. This electron dephasing is the most important factor for limiting the energy of accelerated electrons. However, the electron dephasing, which is enhanced by relativistic and kinetic effects in the homogeneous plasma, can be forestalled through the detuning process arising from the longitudinal density gradient. Simulation results show that the detuning process can effectively maintain the coherence of the laser wake wave in the spatiotemporal wakefield pattern, hence considerable energy enhancement is achievable. The spatiotemporal profiles are analyzed for the detailed study on the relativistic and kinetic effects. In this paper, the optimum slope of the density gradient for increasing electron energy is presented for various laser intensities.

A Study on the Linetic Energy of the Laser-Ablated Cation Using Time-of-Flight Mass Spectrometry

  • 신동남;임훙선;정경훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.171-174
    • /
    • 1997
  • The initial kinetic energy of laser-ablated Zn cation has been investigated via time-of-flight mass spectrometry. The flight times of the ions have been measured with a high voltage pulse on the extract electrode in the mass spectrometer, which has been delayed from the laser pulse. The time-of-flight equation including the initial kinetic energy term of the ion has been derived for the mass spectrometer. The optimum value of the initial kinetic energy has been extracted by fitting the measured flight times into the time-of-flight equation. The initial kinetic energy of the ions generated by Nd:YAG laser (532 nm) at the power density of 5 × 107 W/cm2 has been determined to be 22-44 kJ/mol.

A Study on the Effect of Piston Pin Offset on a Piston Motion and Kinetic Energy Loss (피스톤핀 옵셋이 피스톤운동과 운동에너지 손실에 미치는 영향에 관한 연구)

  • Han, D.J.;Choi, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.22-33
    • /
    • 1993
  • A theoretical analysis of predicting the detailed motion of a piston-crank mechanism within piston-guide clearance is presented, and the analysis is applied to the piston motion in a gasoline engine. A piston movement program is developed to calculate the piston attitude relative to the bore, the piston to bore impact velocity and kinetic energy loss and the net transverse force acting on the piston. This paper presents the formulation of a set of differential equations governing the transverse and rotational motion of a piston. These equations of motion were solved by well established Runge-Kutta method. As a result of this study, it is possible to predict the effects of piston geometry and piston pin offset on a piston motion and kinetic energy loss.

  • PDF

A Study on the Fabrication of the Composite Sabot for a Kinetic Energy Projectile (운동에너지탄용 복합재 이탈피의 제조에 관한 연구)

  • Choi, Jae-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.88-94
    • /
    • 2006
  • In order to substitute current aluminum sabot and to increase the penetration performance of the kinetic energy projectiles, the research and development program for composites sabot has been conducted. For carbon/epoxy composites sabot, unidirectional carbon fiber reinforced epoxy prepreg was chosen and thick sectioned composites preforms with the different fiber angles along the circumferential direction of sabot were prepared by compression molding under the careful processing conditions at $150^{\circ}C$ for 1hour with $70kgf/cm^2$ curing pressure. The composites sabot demonstrated a weight reduction by approximately 30% than that of current aluminum sabot. The muzzle velocity of a kinetic energy projectile with composites sabot was measured to be about 63m/s higher than that with aluminum sabot. These results imply that the penetration performance is expected to be considerably increased when the composite sabot is applied to the kinetic energy projectiles.

Energy Sustainability of an Integrative Kinetic Light Shelf Unit

  • Han, Seung-Hoon
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.15-20
    • /
    • 2015
  • Purpose: Suggesting a working prototype of a kinetic light shelf unit and revealing its energy efficiency by a series of building performance simulations were presented. Recently, kinetic building envelope has been an emerging technology as an innovative way to control exterior building environment, but products from many researches about the facade could not been reached to the industrialization so far. That is because its initial installation, operation and maintenance costs are still too high to use for the practical field, although buildings using kinetic envelopes could decrease their energy consumption significantly. This narrow point of view needs to be reconsidered, since buildings require great amount of energies to run their functions through the whole life and using better building components can lead to achieve much more benefits in aspects of the lifecycle cost (LCC). Method: A series of certified simulation tools like Ecotect and Green Building Studio that are normally used for researches and developments in the field of architecture were utilized. Result: Based on simulation analyses, the result of the study has showed that the proposed system definitely has adaptability to the professions and positively shows practicability as advanced integrative building envelopes with renewable energy association.

Nonequilibrium Molecular Dynamics Simulation Study of Kinetic Energy and Velocity Distribution Profiles of Argon Gases in Shock Waves (충격파 내에서 형성되는 아르곤 기체의 운동 에너지 분포와 속도 분포에 대한 비평형 분자동역학 모의실험 연구)

  • Hwang, Hyon-Seok;Lee, Ji-Hye;Kwon, Chan-Ho;Kim, Hong-Lae;Park, Min-Kyu;Kim, Seong-Shik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.147-153
    • /
    • 2011
  • A series of nonequilibrium molecular dynamics(NEMD) simulations are performed to investigate the kinetic energy and velocity distributions of molecules in shock waves. In the simulations, argon molecules are used as a medium gas through which shock waves are propagating. The kinetic energy distribution profiles reveals that as a strong shock wave whose Mach number is 27.1 is applied, 39.6% of argon molecules inside the shock wave have larger kinetic energy than molecular ionization energy. This indicates that an application of a strong shock wave to argon gas can give rise to an intense light. The velocity distribution profiles in z direction along which shock waves propagate clearly represent two Maxwell-Boltzmann distributions of molecular velocities in two equilibrium regions and one bimodal velocity distribution profile that is attributed to a nonequilibrium region. The peak appearing in the directional temperature in z direction is discussed on a basis of the bimodal velocity distribution in the nonequilibrium region.

Finite Element Simulation of Interface Bonding in Kinetic Sprayed Coatings (유한요소 시뮬레이션을 통한 저온 분사 코팅의 계면 접합에 대한 연구)

  • Bae, Gyu-Yeol;Kang, Ki-Cheol;Yoon, Sang-Hoon;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.74-80
    • /
    • 2008
  • A finite element modeling approach has been described for the simulation and analysis of the micron-scaled solid particle impact behavior in kinetic spraying process, using an explicit code (ABAQUS 6.7-2). High-strain-rate plastic deformation and interface bonding features of the copper, nickel, aluminum, and titanium were investigated via FEM in conjunction with the Johnson-Cook plasticity model. Different aspects of adiabatic shear instabilities of the materials were characterized as a concept of thermal boost-up zone (TBZ), and also discussed based upon energy balance concept with respect to relative recovery energy (RRE) for the purpose of optimizing the bonding process.

Deposition Behavior and Microstructure of Fe-based Amorphous Alloy Fabricated by Vacuum Kinetic Spraying Process (진공 저온 분사 공정을 통해 형성된 Fe계 비정질 재료의 적층거동 및 미세구조 변화 관찰)

  • Kwon, Juhyuk;Park, Hyungkwon;Lee, Illjoo;Lee, Changhee
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.60-65
    • /
    • 2014
  • Fe-based amorphous coatings were fabricated on a soda-lime glass substrate by the vacuum kinetic spray method. The effect of the gas flow rate, which determines particle velocity, on the deposition behavior of the particle and microstructure of the resultant films was investigated. The as-fabricated microstructure of the film was studied by field emission scanning electron microscopy (FE-SEM) and high resolution transmission electron microscopy (HR-TEM). Although the activation energy for transformation from the amorphous phase to crystalline phase was lowered by severe plastic deformation and particle fracturing under a high strain rate, the crystalline phases could not be found in the coating layer. Incompletely fractured and small fragments 100~300 nm in size, which are smaller than initial feedstock material, were found on the coating surface and inside of the coating. Also, some pores and voids occurred between particle-particle interfaces. In the case of brittle Fe-based amorphous alloy, particles fail in fragmentation fracture mode through initiation and propagation of the numerous small cracks rather than shear fracture mode under compressive stress. It could be deduced that amorphous alloy underwent particle fracturing in a vacuum kinetic spray process. Also, it is considered that surface energy caused by the formation of new surfaces and friction energy contributed to the bonding of fragments.

Mean Flow and Variability in the Upper Portion of the East Sea Proper Water in the southwestern East Sea with APEX Floats

  • Lee, Homan;Kim, Tae-Hee;Kim, Ji-Ho;Seo, Jang-Won;Youn, Yong-Hoon
    • Journal of Environmental Science International
    • /
    • v.13 no.2
    • /
    • pp.135-141
    • /
    • 2004
  • Drift data from 17 Argo profiling floats in the East Sea are used to understand the mean flow and its variability in the upper portion of the East Sea Proper Water (UESPW) (around 800 m). The flow penetrates into the Ulleung basin (UB) through two paths: an extension of the southward flowing of the North Korean Cold Water along the east coast of Korea and between Ulleung Island and Dok island. Flows at 800 m are observed in the range of from 0.2 to 4.29 cms-1 and the variability in the north of the UB is larger than that in the south of the UB. In the UB, cyclonic flows from 0.3 to 1.6 cms-1 are observed with the bottom topography. We found that the mean kinetic energy (MKE) and the mean eddy kinetic energy (EKE) are 1.3 and 2.1 cm2s-2 respectively.