• Title/Summary/Keyword: Kinetic Monte Carlo simulation

Search Result 33, Processing Time 0.028 seconds

Application of Monte Carlo Simulation to Intercalation Electrochemistry II. Kinetic Approach to Lithium Intercalation into LiMn2O4 Electrode

  • Kim, Sung-Woo;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.86-92
    • /
    • 2002
  • The present article is concerned with the application of the kinetic Monte Carlo simulation to electrochemistry of lithium intercalation from the kinetic view point. Basic concepts of the kinetic Monte Carlo method and the transition state theory were first introduced, and then the simulation procedures were explained to evaluate diffusion process. Finally the kinetic Monte Carlo method based upon the transition state theory was employed under the cell-impedance-controlled constraint to analyse the current transient and the linear sweep voltammogram for the $LiMn_2O_4$ electrode, one of the intercalation compounds. From the results, it was found that the kinetic Monte Carlo method is much relevant to investigate kinetics of the lithium intercalation in the field of electrochemistry.

A Kinetic Monte Carlo Simulation of Individual Site Type of Ethylene and α-Olefins Polymerization

  • Zarand, S.M. Ghafelebashi;Shahsavar, S.;Jozaghkar, M.R.
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.191-202
    • /
    • 2018
  • The aim of this work is to study Monte Carlo simulation of ethylene (co)polymerization over Ziegler-Natta catalyst as investigated by Chen et al. The results revealed that the Monte Carlo simulation was similar to sum square error (SSE) model to prediction of stage II and III of polymerization. In the case of activation stage (stage I) both model had slightly deviation from experimental results. The modeling results demonstrated that in homopolymerization, SSE was superior to predict polymerization rate in current stage while for copolymerization, Monte Carlo had preferable prediction. The Monte Carlo simulation approved the SSE results to determine role of each site in total polymerization rate and revealed that homopolymerization rate changed from site to site and order of center was different compared to copolymerization. The polymer yield was reduced by addition of hydrogen amount however there was no specific effect on uptake curve which was predicted by Monte Carlo simulation with good accuracy. In the case of copolymerization it was evolved that monomer chain length and monomer concentration influenced the rate of polymerization as rate of polymerization reduced from 1-hexene to 1-octene and increased when monomer concentration proliferate.

A method for determination of diffusion parameters of adatoms using kinetic monte calo simulation (Kinetic Monte Carlo 시뮬레이션을 이용한 흡착 원자의 확산 계수 결정)

    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.419-427
    • /
    • 2000
  • We propose a method to obtain various diffusion parameters of deposited atom. By comparing the results of kinetic Mote Carlo (KMC) simulation with the results of STM, HRLEED experiments, we can determine diffusion parameters including the hopping barrier of an adatom on terrace, detachment barrier at the step edge, and well known Schwoebel barrier. It is found that the branch-width, island density, and roughness were suitable atomic scale structure parameters for comparing simulation calculation with experimental results, and especially, it is found that the parameter branch-width which is not widely used in thin film growth study, plays an important role in determining diffusion barriers.

  • PDF

Response of an Elastic Pendulum under Random Excitations (불규칙 가진을 받는 탄성진자의 응답 해석)

  • Lee, Sin-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.187-193
    • /
    • 2009
  • Dynamic response of an elastic pendulum system under random excitations was studied by using the Lagrangian equations of motion which uses the kinetic and potential energy of a target system. The responses of random excitations were calculated by using Monte Carl simulation which uses the series of random numbers. The procedure of Monte Carlo simulation is generation of random numbers, system model, system output, and statistical management of output. When the levels of random excitations were changed, the expected responses of the pendulum system showed various responses.

Kinetic Monte Carlo Simulations for Defects Diffusion in Ion-implanted Crystalline

  • Jihyun Seo;Hwang, Ok-Chi;Ohseob Kwon;Kim, Kidong;Taeyoung Won
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.731-734
    • /
    • 2003
  • An atomistic process modeling, Kinetic Monte Carlo simulation, has the advantage of being both conceptually simple and extremely powerful. Instead of diffusion equations, it is based on the definitions of the interactions between individual atoms and defects. Those interactions can be derived either directly from molecular dynamics, first principles calculations, or from experiment. In this paper, as a simple illustration of the kinetic Monte Carlo we simulate defects (self-interstitials and vacancies) diffusion after ion implantation in Si crystalline.

  • PDF

The Effect of Speed of Deposited Atom on Growth Morphology (증착원자의 속력이 성장 지형에 미치는 영향)

  • Seo, J.;Shim, H.S.;Kim, S.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.2
    • /
    • pp.86-92
    • /
    • 2012
  • We have studied the effect of speed of deposited atom on morphology evolution during Glancing Angle Deposition (GLAD). Using Kinetic Monte Carlo simulation that incorporate molecular dynamics simulations, we have shown that the rough surface morphology became smoother as the speed of deposited atom is increased. The growth exponent ${\beta}$ change from 0.97 to 0.67 as the speed increase from ${\upsilon}_0$ to $10{\upsilon}_0$ in the case of GLAD. We also examined the effect of speed of deposited atom for the case of chemical vapor deposition (CVD) simulation. Compared to GLAD, the variation in scaling exponent ${\beta}$ is small but the speed of deposited atom also have considerable effect on growth morpholgy in the case of CVD.

Research on the penetration depth of low-energy electron beam in the PMMA-resist film using Monte Carlo numerical analysis (Monte Carlo 수치해석법을 이용한 PMMA resist에서의 저 에너지 전자빔 투과 깊이에 관한 연구)

  • Ahn, Seung-Joon;Ahn, Seong-Joon;Kim, Ho-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.743-747
    • /
    • 2007
  • There has been steady effect for the development of the electron-beam lithography technologies for the circuit patterning of the future semiconductor devices. In this study, we have performed a Monte-Carlo simulation whore $1{\times}10^4$ electrons with various kinetic energies (100eV, 300eV, 500eV, 700eV, and 1000eV) were shot into polymethyl methacrylate(PMMA) resist of 100-nm thickness. The penetration depth of each electron beam in the resist layer were analyzed using Gaussian analysis method.

  • PDF

Monte Carlo Simulation of Phonon Transport in One-Dimensional Transient Conduction and ESD Event (1 차원 과도 전도와 정전기 방전 현상에 관한 포논 전달의 몬테 카를로 모사)

  • Oh, Jang-Hyun;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2165-2170
    • /
    • 2007
  • At nanoscales, the Boltzmann transport equation (BTE) can best describe the behavior of phonons which are energy carriers in crystalline materials. Through this study, the phonon transport in some micro/nanoscale problems was simulated with the Monte Carlo method which is a kind of the stochastic approach to the BTE. In the Monte Carlo method, the superparticles of which the number is the weighted value to the actual number of phonons are allowed to drift and be scattered by other ones based on the scattering probability. Accounting for the phonon dispersion relation and polarizations, we have confirmed the one-dimensional transient phonon transport in ballistic and diffusion limits, respectively. The thermal conductivity for GaAs was also calculated from the kinetic theory by using the proposed model. Besides, we simulated the electrostatic discharge event in the NMOS transistor as a two-dimensional problem by applying the Monte Carlo method.

  • PDF

Monte Carlo Simulation of Thermionic Low Pressure Discharge Plasma (저압 열전자 방전 플라즈마의 Monte Carlo 시뮬레이션)

  • Koh, Wook Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1880-1885
    • /
    • 2012
  • Nonlinear dynamical behaviors in thermionic low pressure discharge are investigated using a particle-in-cell(PIC) simulation. An electrostatic PIC code is developed to model the plasma discharge system including the kinetic effects. The elastic collision, excitation collision, ionization collision, and electron-ion recombination collision are considered in this code. The generated electrons and ions are traced to analyze physical characteristics of the plasma. The simulation results show that the nonlinear oscillation structures are observed for cold plasma in the system and the similar structures are observed for warm plasma with a shift in values of the bifurcation parameter. The detailed oscillation process can be subdivided into three distinct mode; anode-glow, temperature-limited, and double-layer modes.