A method for determination of diffusion parameters of adatoms using kinetic monte calo simulation

Kinetic Monte Carlo 시뮬레이션을 이용한 흡착 원자의 확산 계수 결정

  • Published : 2000.12.01

Abstract

We propose a method to obtain various diffusion parameters of deposited atom. By comparing the results of kinetic Mote Carlo (KMC) simulation with the results of STM, HRLEED experiments, we can determine diffusion parameters including the hopping barrier of an adatom on terrace, detachment barrier at the step edge, and well known Schwoebel barrier. It is found that the branch-width, island density, and roughness were suitable atomic scale structure parameters for comparing simulation calculation with experimental results, and especially, it is found that the parameter branch-width which is not widely used in thin film growth study, plays an important role in determining diffusion barriers.

본 연구는 원자의 주변 환경에 따른 각각의 확산 속도를 구할 수 있는 기구를 제시하였다. STM 또는 HRLEED 등의 실험과 kinetic Monte Carlo(KMC) 시뮬레이션 계산과의 비교를 통하여 테라스 위 흡착 원자의 확산장벽, step 끝 부착 원자의 탈착 확산 장벽, 잘 알려진 Schwoebel 장벽을 포함한 각각의 확산 장벽을 구할 수 있었다. 팔-넓이, 군집 밀도, 거칠기 등이 시뮬레이션 계산과 실험 결과를 비교하는 데에 가장 적절한 원자단위의 구조변수들임을 확인하였고, 특히 아직 잘 사용되지 않은 구조 계수인 가지폭이 확산 장벽을 구별하여 구하는 데에 중요한 역할을 하는 것을 확인하였다.

Keywords

References

  1. Surf. Sci. Rep. v.31 H. Brune
  2. Science v.276 Z. Zhang;M. G. Lagally
  3. Rep. Prog. Phys. v.59 F. Besenbacher
  4. Chem. Rev. v.97 R. Q. Hwang;M. C. Bartelt
  5. Phys. Rev. Lett. v.77 B. D. Yu;M. Scheffler
  6. Phys. Rev. v.B55 B. D. Yu;M. Scheffler
  7. Phys. Rev. v.B56 B. D. Yu;M. Scheffler
  8. Phys. Rev. v.B53 R. Stumpf;M. Scheffler
  9. Phys. Rev. v.B57 G. Boisvrt;L. J. Lewis;M. Scheffler
  10. Phys. Rev. v.B55 C. Ratsch;A. P. Seitsonen;M. Scheffler
  11. Phys. Rev. Lett. v.81 A. Bogicevic;J. Stromquist;B. I. Lundqvist
  12. Phys. Rev. v.B59 G. Boisvert;L. Lewis
  13. Phys. Rev. v.B59 P. J. Feibelman;R. Stumpf
  14. J. Phys. Codens. Matter v.6 P. Stoltze
  15. Phys. Rev. v.B54 G. Boisvert;L. J. Lewis
  16. Surf. Sci. v.351 Y. Li;E. Depristo
  17. Phys. Rev. v.B57 U. Kurpick;T. S. Rahman
  18. Phys. Rev. v.B59 U. Kurpick;T. S. Rahman
  19. Sufr. Sci. Rep. v.21 G. L. Kellog
  20. Phys. Rev. Lett. v.64 G. L. Kellog;P. J. Feibelman
  21. Phys. Rev. Lett. v.72 C. Chen;T. T. Tsong
  22. Phys. Rev. Lett. v.72 G. L. Kellog
  23. Phys. Rev. Lett. v.75 S. C. Wang;G Ehrlich
  24. Phys. Rev. Lett. v.76 G. L. Kellog
  25. Phys. Rev. lett. v.70 T. Michely;M. Hohage;M. Bott;G. Comsa
  26. Phys. Rev. v.B49 J. A. Stroscio;D. T. Peierce
  27. Phys. Rev. Lett. v.73 H. Brune;H. Roder;C. Boragno;K. Kern
  28. Phys. Rev. Lett. v.74 H. Roder;K. Bromann;H. Brune;K. Kern
  29. Phys. Rev. Lett. v.75 K. Bromann;H. Brune;H. Roder;K. Kern
  30. Phys. Rev. v.B52 H. Brune;K. Bromann;H. Roder;K. Kern;J. Jacobsen;P. Soltze;K. W. Jacobson;J. Norskov
  31. Phys. Rev. Lett. v.76 M. Bott;M. Hohage;M. Morgenstern;T. Michely;G. Comsa
  32. Phys. Rev. v.B57 L. Bardotti;C. R. Stoldt;C. J. Jenks;M. C. Bartelt;J. W. Evans;P. A. Tiel
  33. Phys. Rev. v.B59 M. C. Bartelt;C. R. Stoldt;C. J. Jenks;P. A. Tiel;J. W. Evans
  34. Surf. Sci. v.328 H. Durr;J. F. Wendelken;J.-K. Zuo
  35. Phys. Rev. Lett. v.78 J.-K. Zuo;J. F. Wendelken
  36. Phys. Rev. v.B36 J. A. Venables
  37. Phys. Rev. Lett. v.72 J. Tersoff;A. W. Denier van der Gon;R. M. Tromp
  38. Phys. Rev. Lett. v.72 C. Ratsch;A. Zangwill;P. Smilauer;D. D. Vvedensky
  39. Surf. Sci. v.329 C. Ratsch;P. Smilauer;A. Zangwill;D. D. Vvedensky
  40. Fractal Concepts in Surface Growth A-L. Barabasi;H. E. Stanley
  41. Phys. Rev. v.B50 G. S. Bales;D. C. Chrzan
  42. Phys. Rev. v.B55 G. S. Bales;A. Zangwill
  43. Phys. Rev. v.B58 M. N. popescu;J. G. Amar;F. Family
  44. Phys. Rev. Lett. v.73 Z. Zhang;X. Chen;M. G. Lagally
  45. Phys. Rev. Lett v.76 M. Hohage;M. Bott;M. Morgenstern;Z. Zhang;T. Michely;G. Comsa
  46. Phys. Rev. Lett. v.74 J. Jacobsen;K. W. Jacobson;P. Soltze;J. K. Norskov
  47. Phys. Rev. v.B34 A. F. Voter
  48. J. Phys. Conds. Matter v.9 A. C. Levi;M. Korrla