• Title/Summary/Keyword: Kinematic Constraint

Search Result 112, Processing Time 0.022 seconds

Kinematic Modeling of Distal Radioulnar Joint for Human Forearm Rotation (인간의 전완 회전을 위한 원위 요척골 관절의 기구학적 모델링)

  • Yoon, Dukchan;Lee, Geon;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.251-257
    • /
    • 2019
  • This paper presents the kinematic modeling of the human forearm rotation constructed with a spatial four-bar linkage. Especially, a circumduction of the distal ulna is modeled for a minimal displacement of the position of the hand during the forearm rotation from the supination to the pronation. To establish its model, four joint types of the four-bar linkage are, firstly, assigned with the reasonable grounds, and then the spatial linkage having the URUU (Universal-Revolute-Universal-Universal) joint type is proposed. Kinematic analysis is conducted to show the behavior of the distal radio-ulna as well as to evaluate the angular displacements of all the joints. From the simulation result, it is, finally, revealed that the URUU spatial linkage can be substituted for the URUR (Universal-Revolute-Universal-Revolute) spatial linkage by a kinematic constraint.

Dynamic Analysis of Multi-Robot System Forcing Closed Kinematic Chain (복수로봇 시스템의 동력학적 연구-대상물과 닫힌 체인을 형성할때의 문제-)

  • 유범상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1023-1032
    • /
    • 1995
  • The multiple cooperating robot system plays an important role in the research of modern manufacturing system as the emphasis of production automation is more on the side of flexibility than before. While the kinematic and dynamic analysis of a single robot is performed as an open-loop chain, the dynamic formulation of robot in a multiple cooperating robot system differs from that of a single robot when the multiple cooperating robots form a closed kinematic chain holding an object simultaneously. The object may be any type from a rigid body to a multi-joint linkage. The mobility of the system depends on the kinematic configuration of the closed kinematic chain formed by robots and object, which also decides the number of independent input parameters. Since the mobility is not the same as the number of robot joints, proper constraint condition is sought. The constraints may be such that : the number of active robot joints is kept the same as mobility, all robot joints are active and have interrelations between each joint forces/torques, two robots have master-slave relation, or so on. The dynamic formulation of system is obtained. The formulation is based on recursive dual-number screw-calculus Newton-Eulerian approach which has been used for single robot analysis. This new scheme is recursive and compact symbolically and may facilitate the consideration of the object in real time.

Analysis on the Kinematics and Dynamics of Human Arm Movement Toward Upper Limb Exoskeleton Robot Control - Part 2: Combination of Kinematic and Dynamic Constraints (상지 외골격 로봇 제어를 위한 인체 팔 동작의 기구학 및 동역학적 분석 - 파트 2: 제한조건의 선형 결합)

  • Kim, Hyunchul;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.875-881
    • /
    • 2014
  • The redundancy resolution of the seven DOF (Degree of Freedom) upper limb exoskeleton is key to the synchronous motion between a robot and a human user. According to the seven DOF human arm model, positioning and orientating the wrist can be completed by multiple arm configurations that results in the non-unique solution to the inverse kinematics. This paper presents analysis on the kinematic and dynamic aspect of the human arm movement and its effect on the redundancy resolution of the seven DOF human arm model. The redundancy of the arm is expressed mathematically by defining the swivel angle. The final form of swivel angle can be represented as a linear combination of two different swivel angles achieved by optimizing two cost functions based on kinematic and dynamic criteria. The kinematic criterion is to maximize the projection of the longest principal axis of the manipulability ellipsoid of the human arm on the vector connecting the wrist and the virtual target on the head region. The dynamic criterion is to minimize the mechanical work done in the joint space for each of two consecutive points along the task space trajectory. The contribution of each criterion on the redundancy was verified by the post processing of experimental data collected with a motion capture system. Results indicate that the bimodal redundancy resolution approach improved the accuracy of the predicted swivel angle. Statistical testing of the dynamic constraint contribution shows that under moderate speeds and no load, the dynamic component of the human arm is not dominant, and it is enough to resolve the redundancy without dynamic constraint for the realtime application.

On the Singularities of Optimality Constraint-based Resolved Motion Methods for a Redundant Manipulator (여유 자유도 매니퓰레이터를 위한 지적 제한 조건을 기반으로 한 Resolved Motion 방법의 특이점에 관한 연구)

  • Cho, Dong-Kwon;Choi, Byoung-Wook;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.386-390
    • /
    • 1992
  • Algorithmic or kinematic singularities are inevitably a introduced if optimality criteria or augmented kinematic equations are used to resolve the redundancy of almost any manipulator with rotary joints. In this paper, a sufficient condition for a singularity-free optimal solution of the kinematic control of a redundant manipulator is derived and, specifically, algorithmic singularities are analyzed for optimality-based methods. A singularity-free space (SFS) to characterize the performance of a secondary task for a redundant manipulator using the sufficient condition for a redundant manipulator is defined. The SFS is a set of regions classified by the loci of configurations satisfying the inflection condition for manipulability measure in the Configuration space. Using SFS, the topological property of the Configuration space and the invertible workspace without singularities are analyzed.

  • PDF

The inverse kinematics and redundancy of reclaimers (불출기의 여유자유도와 역기구학 해)

  • Shin, Ki-Tae;Choi, Chin-Thoi;Lee, Kwan-Hee;Ahn, Hyun-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.469-475
    • /
    • 1997
  • A method for solving the inverse kinematic problem of reclaimer is presented in this paper. The reclaimers in the raw yard are being used to dig raws and transfer them to the blast furnaces. The kinematic configuration of the reclaimer is different from that of commercially available robots, because it has a rotating disk with several buckets at the end of the boom to dig raws. The reclaimer has a redundancy due to the rotating disk : the degrees of freedom are greater than the number of forward kinematic equations. A plane equation in the 3-dimensional space is determined by using several points adjacent to the reclaiming point of the raw ores pile. A constraint is obtained from the relation ship of the plane equation and trajectories of the bucket of the reclaimer. Finally, a solution of the inverse kinematics of the reclaimer is determined by a numerical method.

  • PDF

A NUMERICAL ALGORITHM FOR KINEMATIC ANALYSIS OF THE MACPHERSON STRUT SUSPENSION SYSTEM USING POINT COORDINATES

  • Attia, Hazem Ali
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.8 no.1
    • /
    • pp.67-80
    • /
    • 2004
  • In the present paper, a numerical algorithm for the kinematic analysis of a MacPherson strut motor-vehicle suspension system is developed. The kinematic analysis is carried out in terms of the rectangular Cartesian coordinates of some defined points in the links and at the joints. The presented formulation in terms of this system of coordinates is simple and involves only elementary mathematics. The resulting constraint equations are mostly either linear or quadratic in the rectangular Cartesian coordinates. The proposed formulation eliminates the need to write redundant constraints and allows to solve a reduced system of equations which leads to better accuracy and a reduction in computing time. The algorithm is applied to solve the initial positions as well as the finite displacement, velocity and acceleration problems for the MacPherson strut motor-vehicle suspension system.

  • PDF

Kinematic Modeling and Inverse Dynamic Analysis of the IWR Biped Walking Robot (이족보행로봇 IWR의 기구학적 모델링과 역동역학 해석)

  • 김진석;박인규;김진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.561-565
    • /
    • 2000
  • This paper deals with dynamic walking and inverse dynamic analysis of the IWR biped walking robot. The system has nine bodies of the multibody dynamics. and all of the .joints of them are made up of the revolute joints at first. The problem of redundant constraint in double support phase is solved by changing the type of the joints considering kinematic relation. To make sure of its dynamic walking, the movement of balancing weight is determined by which satisfies not only the condition of ZMP by applying the principle of D'Alembert but also the contact condition of the ground. The modeling of IWR and dynamic walking are realized using DADS.

  • PDF

Development of an Efficient Vehicle Dynamics Model Using Massless Link of a Suspension (현가장치 무질량 링크를 이용한 효율적인 차량동역학 모델 개발)

  • Jung Hongkyu;Kim Sangsup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.99-108
    • /
    • 2005
  • This paper represents an efficient modeling method of a suspension system for the vehicle dynamic simulation. The suspension links are modeled as composite joints. The motion of wheel is defined as relative one degree of freedom motion with respect to car body. The unique relative kinematic constraint formulation between the car body and wheel enables to derive equations of motion in terms of wheel vertical motion. Thus, vehicle model has ten degrees of freedom. By using velocity transformation method, the equations of motion of the vehicle is systematically derived without kinematic constraints. Various vehicle simulation such as J-turn, slowly increasing steer, sinusoidal sweep steer and bump run has been performed to verify the validity of the suggested vehicle model.

An Inverse Kinematics of Redundant Manipulators (여유 자유도 로봇의 역기구학에 관한 연구)

  • Cho, Dong-Kwon;Sung, Young-Hwee;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.399-402
    • /
    • 1993
  • In this paper, an inverse kinematics of redundant manipulators is proposed. Optimality-constraint based inverse kinematic algorithms have some problems because those algorithms are based on necessary conditions for optimality. Among the problems, switching from a maximum value to a minimum value may occur and make an inverse kinematic solution unstable while performing a given task. An inverse kinematic solution for protecting from the switchings is suggested. By sufficient conditions for optimality, the configuration space is defined as a set of regions, potentially good configuration region and potentially bad configuration region. Inverse kinematics solution within potentially good configuration region can provide joint trajectories without both singularities and switchings. Through a simulation of tracing a circle, we show the effectiveness of this inverse kinematics.

  • PDF

A Dynamic Analysis of Constrained Multibody Systems (구속된 다물체 시스템을 위한 동역학 해석론)

  • 이상호;한창수;서문석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2339-2348
    • /
    • 1994
  • The objective of this paper is to develop a solution method for the differential-algebraic equation(DAE) derived from constrained muti-body dynamic systems. Mechanical systems are often modeled as bodies and joints. Differential equations of motion are formulated for bodies. Since the bodies are connected by joint, the differential variables must satisfy the kinematic constraint equations that come from the joints. Difficulties are arised due to drift of the differential variables off the constraint equations. An optimization method is adopted to correct the drift of the differential variables. To demonstrate the efficiency of the proposed method a slider-crank mechanism is analyzed dynamically. Identical results are obtained as these from the commercial program DADS. Dynamic analysis of a High Mobility Multi-purpose Wheeled. Vehicle(HMMWV) is carried out to show the practicalism of the proposed method.