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A NUMERICAL ALGORITHM FOR KINEMATIC ANALYSIS OF
THE MACPHERSON STRUT SUSPENSION SYSTEM USING POINT
COORDINATES

HAZEM ALI ATTIA

ABSTRACT. In the present paper, a numerical algorithm for the kinematic analysis
of a MacPherson strut motor-vehicle suspension system is developed. The kinematic
analysis is carried out in terms of the rectangular Cartesian coordinates of some de-
fined points in the links and at the joints. The presented formulation in terms of
this system of coordinates is simple and involves only elementary mathematics. The
resulting constraint equations are mostly either linear or quadratic in the rectangu-
lar Cartesian coordinates. The proposed formulation eliminates the need to write
redundant constraints and allows to solve a reduced system of equations which leads
to better accuracy and a reduction in computing time. The algorithm is applied to
solve the initial positions as well as the finite displacement, velocity and acceleration

problems for the MacPherson strut motor-vehicle suspension system.

1. INTRODUCTION

In recent years various methods for the analytical and computational kinematic anal-
ysis of spatial mechanisms were developed. Such methods can be classified according
to the type of coordinates chosen to determine their configuration and specify their
constraints. Some formulations use a large set of absolute coordinates [1,2]. The po-
sition and orientation of any rigid link in the mechanism are described with respect
to the global reference coordinate system. The algebraic equations of constraints are
introduced to represent the kinematic joints that connect the rigid bodies. Although in
this type of formulation the constraint equations are easy to construct, it has the dis-
advantage of the large number of defined coordinates. Other formulations use relative

coordinates where the position of each link is defined with respect to the previous link
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by means of relative joint coordinates that depend on the type of the joint used [3-5].
This type of formulation yields the constraints as a minimal set of algebraic equations.
However, the constraint equations are derived based on loop closure equations, and
the resulting constraint equations are highly nonlinear and contain complex circular
functions. Another formulation which is based on point coordinates is discussed in [6-
13]. The configuration of the system is described in terms of the rectangular Cartesian
coordinates of some defined points in the links and at the joints. The system constraint
equations are then written to fix the relative positions of the points in each rigid link
and also the relative positions between the different links determined by the type of
joints connecting them. In this paper the kinematic analysis of a MacPherson strut
motor-vehicle suspension system is carried out in terms of point coordinates. The po-
sition, velocity, and acceleration analyses are carried out to determine the positions,
velocities, and accelerations for the unknown points and links in the mechanism. The
velocities and accelerations of other points of interest can also be calculated. The an-
gular velocity and acceleration of any link in the mechanism are evaluated in terms of

the Cartesian coordinates, velocities, and accelerations of the assigned points.

2. MODELLING OF THE MACPHERSON STRUT SUSPENSION

In the past ten years much attension has been focused on improving the ride/handling
compromise of the car by using a multi-loop suspension and steering mechanism. The
multi-loop structure usually gives the possibility to separate the wheel bouncing pa-
rameters determining ride comfort from steering. The MacPherson strut is being used
for front wheel axles of current small cars, and can also be used for rear axles. The light
weight and compact size of the mechanism are its main advantages. Furthermore, the
system design allows longer axle springs, and thus a soft and long-strike suspension.
Figure 1 illustrates the multi-loop MacPherson Strut suspension system mounted on
the left side of the vehicle [5]. According to its performance, the mechanism can be
separated into two independent parts; bouncing mechanism and steering mechanism
(see Fig. 2 [5]). The bouncing mechanism consists of the four-bar linkage OAED with
links 1, 2, 3, and 4. The bouncing action caused by the rotation of the lower arm (link
2) about the axis Oy, 02 and the accompanying relative sliding motion of the portions
of the strut (link 3 and 4). The lower portion of the strut is the wheel knuckle. The
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steering mechanism consists of the four-bar linkage FCBD. The steering action caused
by the sliding motion of the steering rack (link 6), and accompanying motion of the tie
rod (link 5) causing the rotation of the strut about the steering axis AD. The joints
at A, B, C and D are spherical joints, while the coaxial joints at O; and Og are rev-
olute joints forming a compound revolute joint. The strut joint at E is a sliding joint
with compliance. Thus, the MacPherson strut suspension mechanism consists of six
links, four spherical joints and one compound revolute joint and two sliding joints. The
system has three degrees-of-freedom (DOF): one DOF corresponding to the vertical
motion of the chassis and two DOF associated with the four-bar linkages constituting
the bouncing and steering mechanisms, one corresponds to the A-arm rotation and the

later corresponds to the steering input.

2.1. Displacement Analysis. The configuration of the mechanism can be specified
by defining the Cartesian coordinates of a set of points on the links and joints relative
to a reference frame. Figure 3 illustrates the mechanism with the assigned points and
the reference frame fixed to the chassis. The positive x-direction is taken to the rear of
the vehicle; the positive y-direction is taken to the right of the vehicle parallel to the
sliding axis of the steering rack at F; and the positive z-direction is thus taken in the
vertical upwards. Each binary link is replaced by two points located at both ends, while
the adjacent links are sharing common points. The strut sliding joint is represented
by two pairs of points: (5, 7) and (4, 8) each is located at one of the sliding bodies
to define the direction of the axis of the joint at any instant. The sliding joint F is
represented by two points 3 and 9. Each of the four spherical joints is represented by
one point located at its centre, i.e., points 4, 5, 6, and 9, while the compound revolute
joint is represented by two points 1 and 2 located on its axis. The whole mechanism
is then replaced by 9 points. These points are classified as known or unknown points.
The known points are points 1, 2, 3 and 4 that are fixed on the chassis. The Cartesian
coordinates of the five unknown points 5, 6, 7, 8 and 9 located on the moving links
define the motion variables. Therefore, 15 constraint equations are needed to solve
for the 15 unknown Cartesian coordinates. The constraints are either geometric or
kinematic constraints. Geometric constraints are the distance constraints that fix the
relative positions of the points located on the same rigid link of the mechanism. The

geometric constraint equations are expressed in the Cartesian coordinates of the points
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as follows,
(25— 21)2 + (ys —91)2 + (25 — 21)° —d3 1 = (1)
(w5 — 22)* + (ys — 1)? + (25 — 22)° —d3 2 =0 2)
(w6 — 25)° + (y6 — ¥s5)* + (26 — 25)° — dg5 =0 ®3)
(7 —25)% + (y7 — ys) + (27 — 25)° —d7 5 =0 (4)
(w7 — @6)? + (y7 — y6)? + (27 — 26)° — di g =0 (5)
(28 — 24)® + (y8 — ya)* + (8 — 2)> = d§ 4 = 0 (6)
(9 — 6)% + (Yo — ¥6)” + (20 — 26)° — d%,e‘ =0 (7)

where d; ; is the distance between points i and j belonging to the same rigid link, and
zi,9;, and z; are the Cartesian coordinates of point i. Kinematic constraints result
from the conditions imposed by the kinematic joints on the relative motion between
the bodies they comprise. Points located at the centre of a spherical joint or at the axis
of a revolute joint automatically eliminate all the kinematic constraints due to these
joints. However, because of the presence of the strut sliding joint in the mechanism,
kinematic constraints are added in terms of the coordinates of the points located along

the axis of the strut sliding joint. Such kinematic constraints are expressed as,

(y7 — y5)(28 — 24) — (27 — 25)(ys — ya) = 0 (8)
(z7 — 25)(28 — 24) — (27 — 25) (w8 —x4) = 0 (9)
(y7 — ya) (28 — 21) — (27 — 24)(ys —ya) =0 (10)
(27 — 24) (28 — 24) — (27 — 24) (w8 —24) =0 (11)

Moreover, driving constrains are added to the above constraints as functions of the two
driving variables, namely, the angle 6 of the lower arm and the sliding variable S of the

steering rack (see Fig. 3) in the form,

(25 —z1) —ds1cos(f) =0 (12)
xg—x3 =10 (13)
yo—ys+S=0 (14)

29— 23 =10 (15)
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Equation (1) expresses the required 15 independent constraint equations in terms of
the Cartesian coordinates of the assigned points. Given the set of the known coordinates
and the driving variables at each instant, the nonlinear constraint Eq. (1) can be
solved by any iterative numerical method [14] to determine the 15 unknown Cartesian
coordinates. The main kinematical properties of the suspension are described by the
coordinates of the wheel centre point, the kingpin angle « and the camber angle 3 [15].
The wheel centre point (point 10, see Fig. 2) is defined as the point at which the wheel
spin axis intersects the wheel plane. Points 7 and 10 define the wheel spin axis. The
coordinates of the wheel centre point can easily be determined by specifying its position
relative to three other points 5, 6, and 7 on the knuckle. The Kingpin angle determines
the steering aligning torque in conjunction with steering offset and wheel caster. The
kingpin angle « is defined as the inclination angle of the steering axis AD relative to
the vertical longitudinal plane, measured in the transverse plane of the vehicle [14] and
therefore from Fig. 4;

—1 (Y7 —ys)

(27 — 25)

A positive angle « signifies a displacement of point 5 in the negative y direction. The
camber angle 3 is the inclination of the wheel plane relative to the longitudinal vehicle

plane, measured in the transverse plane of the vehicle and therefore;

o = tan

(16)

(17)
Positive camber means that the wheels are tilted out at the top than at the bottom.

2.2. Velocity and Acceleration Analyses. The velocity equations are derived by
differentiating Eq. (1) with respect to time. Since the velocity equations are linear, the
vector of velocities; G = [g1, o, - - - @37, S, f]T can be partitioned; g = [[u]T,wT]T, and

the velocity equation is written in the partitioned matrix form,

[Cgla=0 (18)
[Culit = [Co]W (19)
where 1 = [&5, 95,25, - , 0|7 and W = [£1,91, 71, , 9, 0] are the unknown and

known vectors of velocities, respectively. Let z; ; = x; — «;, then the two sub-matrices



72

HAZEM ALI ATTIA

[Cy] and [Cy] of the constraint Jacobian matrix [Cjy] which contains the partial deriva-
tives of the constraint equations with respect to the points coordinates are;

2z5,1
2x5,2
2z5,6
2z5,7

[Cu] = 0

and
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Similarly, the acceleration equation is derived by differentiating the velocity Eq. (4)

with respect to time. Partitioning the vector of accelerations ¢ to [07,w

7]

T where 1

and w are the vectors of unknown and known accelerations respectively, the acceleration

O OO OO OO
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equation is expressed as,

[Cu]ﬁ = [Cw]‘x’ - ([CQ]Q)qq

where the two submatrices [Cy,] and [C,,] are defined by Eqgs. (6) and (7) respectively

and the square velocity term ([Cy]q)qq is expressed as follows,

Regardless the order of nonlinearity of the constraint Eq.

283 ) + 203 o + 282 5
203§ + 208 5 + 243 5
202 5 + 293 5 + 243 5
203 ¢ + 205 ¢ + 243
248 4+ 2034 + 253,
208 6 + 208 6 + 243 4
U7,5%8,4 — £7,598,4
X7 528 4 — 27,5784
Ur428.4 — 27,418 4
T75%8,4 — 27,5T8,4
ds 1 cos(é’)é2
0
0

L 0

203y + 203, + 248, |
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(22)

(23)

(1), the velocity and

acceleration equations are linear in terms of ¢ and ¢ respectively. If the position analysis

has been formulated correctly, then the matrix [C,,] is of a sufficient rank and becomes

nonsingular. Therefore, the velocities and accelerations of the unknown points can be

easily determined by solving both the linear Eqs. (5) and (8) using any numerical

method. The velocities and accelerations of other points of interest can be calculated if

their positions are specified. By specifying the position of the center point 10 relative to
points 5, 6 and 7 of the knuckle, its position, velocity, and acceleration can be evaluated.
On the other hand, the angular velocity and acceleration of the wheel knuckle link 3, or
analogously of any other link in the mechanism, can be evaluated from the Cartesian

coordinates, velocities, and accelerations of the three points 5, 6, and 7 defined on the
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wheel knuckle as follows,

U ETUTS _ GgTars

’ ~
V65175 ag5 775

where @; ; = a; j — wx(wrr; ;) and vectors r; ;,v; 5, and a; ; are the relative position,
velocity, and acceleration vectors between points i and j. It should be noted that in this
formulation, the kinematic constraints due to some common types of kinematic joints
(e.g. revolute or spherical joints) can be automatically eliminated by properly locating
the equivalent particles. The remaining kinematic constraints along with the geometric
constraints are, in general, either linear or quadratic in the Cartesian coordinates of the
particles. Therefore, the coefficients of their Jacobian matrix are constants or linear
in the rectangular Cartesian coordinates. Where as in the formulation based on the
relative coordinates, the constraint equations are derived based on loop closure equa-
tions which have the disadvantage that they do not directly determine the positions of
the links and points of interest which makes the establishment of the dynamic problem
more difficult. Also, the resulting constraint equations are highly nonlinear and con-
tain complex circular functions. The absence of these circular functions in the point
coordinate formulation leads to faster convergence and better accuracy. Furthermore,
preprocessing the mechanism by the topological graph theory is not necessary as it
would be the case with loop constraints. Also, in comparison with the absolute coordi-
nates formulation, the manual work of the local axes attachment and local coordinates
evaluation as well as the use of the rotational variables and the rotation matrices in
the absolute coordinate formulation are not required in the point coordinate formu-
lation. This leads to fully computerized analysis and accounts for a reduction in the
computational time and memory storage. In addition to that, the constraint equations
take much simpler forms as compared with the absolute coordinates. Furthermore,
the use of absolute coordinates may cause numerical problems if differences of large
values of the absolute coordinates are used, e.g. for the calculation of spring or damper
forces or constraint residuals. The elimination of the rotational coordinates, angular
velocities and angular accelerations in the presented formulation, leads to possible sav-
ings in computation time when this procedure is compared against the absolute or
relative coordinate formulation. It has been determined that numerical computations

associated with rotational transformation matrices and their corresponding coordinate
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transformations between reference frames is time consuming and, therefore, if these
computations are avoided more efficient codes may be developed. The elimination of
rotational coordinates can also be found very beneficial in design sensitivity analysis
of multibody systems. In most procedures for design sensitivity analysis, leading to
an optimal design process, the derivatives of certain functions with respect to a set of
design parameters are required. Analytical evaluation of these derivatives are much
simpler if the rotational coordinates are not present and if we only deal with transla-
tional coordinates. Some practical applications of multibody dynamics require one or
more bodies in the system to be described as deformable in order to obtain a more real-
istic dynamic response. Deformable bodies are normally modeled by the finite element
technique. Assume that the deformable body is connected to a rigid body described by
a set of particles. Then, one or more particles of the rigid body can coincide with one
or more nodes of the deformable body in order to describe the kinematic joint between
the two bodies. This is a much simpler process that when the rigid body is described
by a set of translational and rotational coordinates. In general, the point coordinates
have additional advantages over the other systems of coordinates since they are the
most suitable coordinates for the graphics routines and the animation programs. It
should be mentioned that there is no single multibody formulation to be considered
as the best formulation for general mechanical systems. Each formulation has its own

unique or common features and, therefore, selected features should be adopted to our

advantages.

2.3. Numerical Example. Since the position analysis is a nonlinear problem which
is solved by an iterative numerical method, it is expected that the problem of multiple
solutions arrises. In order to avoid such problem, knowing the input driving variables,
measurements can be used initially to obtain a good initial guess at the starting point
of the position analysis. In the subsequent iterations, the problem of multiple solution
can be overcome taking as a good initial guess the previous configuration of the system.
The initial position of the mechanism is given by the initial coordinates of the assigned
points listed in Table 1. The chassis is assumed stationary and therefore the values
of the velocities and accelerations of all known points fixed on it are identically zero.
The driving variables § and S are taken as functions of time in the form, 6(t) =
0.8 4+ 0.25¢ + 0.0625t% and S(t) = 0.15t + 0.0025t2, respectively. Given the known



76 HAZEM ALI ATTIA

coordinates, the 15 nonlinear equations of constraints given by Eq. (1), are solved
by the Newton-Raphson’s method of successive approximation to determine the 15
unknown Cartesian coordinates for different time steps. Then the velocity Eq. (5) and
acceleration Eq. (8) are solved for the unknown Cartesian velocities and accelerations
of the unknown points for different time steps using the L-U factorization with pivoting
method. It is recommended here to consider each of the two driving variables separately
in order to study their effect clearly.

a) Effect of the driving rotation variable 6(S = 0):

Table 2 illustates the effect of the driving rotation variable 6 on the Cartesian coor-
dinates of the wheel centre point 10 and the angular velocity and acceleration of the
knuckle. Since the rotation of the lower arm by an angle 6 causes a sliding motion of
the strut sliding joint along the axis AD, the variation of the vertical displacement of
the wheel centre point in the z direction is the most dominant. The time variations
of the kingpin as well as the camber angles and the vertical displacement of the wheel
centre point are, respectively, presented in Figs. 5 and 6.

b) Effect of the sliding variable S (6 = 90°):

Table 3 illustrates the effect of the driving sliding variable S on the Cartesian coordi-
nates of the wheel centre point 10 and the angular velocity and acceleration of the wheel
knuckle. The sliding motion of the rack causes the rotation of the strut and the wheel
about the steering axis AD. By increasing the sliding displacement S, the x-coordinate
of the centre point decreases. The decrease of the x-coordinate is the most dominant
change in the coordinates of the centre point. Figures 7 and 8, respectively, indicate the
time variations of the kingpin as well as the camber angles and the vertical displace-
ment of the wheel centre point. It should be noted that the results of the simulation are
tested and compared with the simulation based on absolute coordinates formulation.

The comparison shows a complete agreement between the two formulations.

3. CONCLUSIONS

In this paper, a numerical algorithm for the kinematic analysis of the spatial two
DOF multi-loop MacPherson strut suspension mechanism is presented. The kinematic
analysis is carried out in terms of the rectangular Cartesian coordinates of some defined

points in the links and at the kinematic joints. The present formulation accommodates
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all types of basic kinematic joints; revolute, prismatic, and spherical joints. Because
of the presence of the strut prismatic joint, the kinematic constraints are added to the

geometric constraints in the formulation. Additional driving constraints are included

as functions of the two input driving variables. The suggested algorithm eliminates

the need to write redundant constraints and allows the solution of a reduced system

of equations. The results of the analysis indicate the simplicity and generality of the
proposed algorithm.
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Fig. 1 The MacPherson strut Fig. 2 The MacPherson strut
suspension system [5]. mechanism [5].

Fig. 3 The MacPherson strut Fig. 4 Kingpin and camber
with the assigned points. angles.
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Table 1 Initial Cartesian coordinates (mm) of the points

(x1.¥1:21)

(270, -5,-10)

(X6+¥6+%6)

(560,-300,60)

(x2,Y2:22)

(540, -10, -20)

(X7.¥7:27)

(452,-320,20)

(x3.¥3.%3)

(570,60,90)

(Xg.¥8:28)

(456, -250,246)

(x4,y.,z4)

(460,-180,470)

(X9:¥9:25)

(570,60,90)

(xs5,¥5,%5)

(450,-330,-40)

(%10, Y1042 10)

(452, -410,20)

Table 2 Simulation results for S=0

Time| © (X101Y101Z10) W knyckte O kuckie
(8) | (deg) (mm) (rad/s) (rad/s?)
0.0 {45.84] (451,-291,315) | -(0.4,0.03,0.3) (6.3,-0.05,0.39)
0.2 |48.85] (446,-305,305) | -(0.3,0.04,0.2) (0.373,0.003‘,0.3)
0.6 I55.72| (440,-334,277) | (0.2,-0.04,-0.3) | (0.3%,0.06,0.25)
1.0 |63.74] (437,-364,234) | (-0.1,0.01,0.02) { (0.26,0.1,0.198)
1.2 |68.18} (436,-378,208) | (-0.03,0.02,0.1) (0.2,0.07,0.18)
1.6 {77.92{ (437,-401,146) | (0.05,0.05,0.12) (0.19,0.05,0.1)
2.0 [88.81](440,-415,71.6)) (0.12,0.06,0.17) (0.15,0.01,0.1)
2.2 {100.8| (444,-412,-12) | (0.18,0.058,0.2) (0.13,-0.03,0.04)
2.6 |107.3] (447,-404,-57) (0.2,0.05,0.21) {(0.13,-0.1,-0:02)
Table 3 Simulation results for 6=90°
Timej S (X10,Y101Z10) W knuckle A knuckle
(8) | (mm) (mm) {rad/s) (rad/s?)
0.00] 0.00 |(440.4,-415,63)} (0.03,0.2,0.617) -(0.04,0.27,0.77)
0.0s| 7.56 | (434, -415,63.5)} -(0.09,0.66,1.9) -(1.82,14.2,40.7)
0.10]15.25] (427, -414,63.5)| -(0.01,0.06,0.2) -(6.09,0.67,1.92)
0.15/23.06| (420,-413,63.3)[~-(0.004,0.03,0.1) (0.009,0.07,0.2)
0.20/31.00| (413.7,-411,63)| (-0.18,0.14,0.4) (0.197,1.54,4.4)
0.25/39.06|(407,-409,62.4)| (0.8,-0.76,-1.4) (1.4,-5.57,~-9.7)
0.30/47.25{(400.4,-406,62}} (0.3,-0.24,-0.3) -(1.73,0.98,2.51)
0.35/55.56| (394, -402,60.7)| -(4.1,0.53,6.9) (115.3,51.8,2689)
0.40{64.00 (389,-393,-50) -(0.37,1.6,4.78) (0.526,1.94,4.9)
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