• Title/Summary/Keyword: Kenmotsu manifold

Search Result 72, Processing Time 0.03 seconds

Almost Kenmotsu Metrics with Quasi Yamabe Soliton

  • Pradip Majhi;Dibakar Dey
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.97-104
    • /
    • 2023
  • In the present paper, we characterize, for a class of almost Kenmotsu manifolds, those that admit quasi Yamabe solitons. We show that if a (k, 𝜇)'-almost Kenmotsu manifold admits a quasi Yamabe soliton (g, V, 𝜆, 𝛼) where V is pointwise collinear with 𝜉, then (1) V is a constant multiple of 𝜉, (2) V is a strict infinitesimal contact transformation, and (3) (£Vh')X = 0 holds for any vector field X. We present an illustrative example to support the result.

∗-RICCI SOLITONS AND ∗-GRADIENT RICCI SOLITONS ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS

  • Dey, Dibakar;Majhi, Pradip
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.625-637
    • /
    • 2020
  • The object of the present paper is to characterize 3-dimensional trans-Sasakian manifolds of type (α, β) admitting ∗-Ricci solitons and ∗-gradient Ricci solitons. Under certain restrictions on the smooth functions α and β, we have proved that a trans-Sasakian 3-manifold of type (α, β) admitting a ∗-Ricci soliton reduces to a β-Kenmotsu manifold and admitting a ∗-gradient Ricci soliton is either flat or ∗-Einstein or it becomes a β-Kenmotsu manifold. Also an illustrative example is presented to verify our results.

ON C-PARALLEL LEGENDRE AND MAGNETIC CURVES IN THREE DIMENSIONAL KENMOTSU MANIFOLDS

  • MAJHI, PRADIP;WOO, CHANGHWA;BISWAS, ABHIJIT
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.587-601
    • /
    • 2022
  • We find the characterizations of the curvatures of Legendre curves and magnetic curves in Kenmotsu manifolds with C-parallel and C-proper mean curvature vector fields in the tangent and normal bundles. Finally, an illustrative example is presented.

ON CONTACT SLANT SUB MANIFOLD OF L × f F

  • Sohn, Won-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.129-134
    • /
    • 2004
  • It is well known that the warped product $L\;{\times}\;{_f}\;F$ of a line L and a Kaehler manifold F is an almost contact Riemannian manifold which is characterized by some tensor equations appeared in (1.7) and (1.8). In this paper we determine contact slant submanifolds tangent to the structure vector field of $L\;{\times}\;{_f}\;F$.

CONTACT CR-WARPED PRODUCT SUBMANIFOLDS IN KENMOTSU SPACE FORMS

  • ARSLAN, KADRI;EZENTAS, RIDVAN;MIHAl, ION;MURATHAN, CENGIZHAN
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.1101-1110
    • /
    • 2005
  • Recently, Chen studied warped products which are CR-submanifolds in Kaehler manifolds and established general sharp inequalities for CR-warped products in Kaehler manifolds. In the present paper, we obtain sharp estimates for the squared norm of the second fundamental form (an extrinsic invariant) in terms of the warping function for contact CR-warped products isometrically immersed in Kenmotsu space forms. The equality case is considered. Some applications are derived.

EQUIVALENCE CONDITIONS OF SYMMETRY PROPERTIES IN LIGHTLIKE HYPERSURFACES OF INDEFINITE KENMOTSU MANIFOLDS

  • Lungiambudila, Oscar;Massamba, Fortune;Tossa, Joel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1259-1280
    • /
    • 2016
  • The paper deals with lightlike hypersurfaces which are locally symmetric, semi-symmetric and Ricci semi-symmetric in indefinite Kenmotsu manifold having constant $\bar{\phi}$-holomorphic sectional curvature c. We obtain that these hypersurfaces are totally goedesic under certain conditions. The non-existence condition of locally symmetric lightlike hyper-surfaces are given. Some Theorems of specific lightlike hypersurfaces are established. We prove, under a certain condition, that in lightlike hyper-surfaces of an indefinite Kenmotsu space form, tangent to the structure vector field, the parallel, semi-parallel, local symmetry, semi-symmetry and Ricci semi-symmetry notions are equivalent.

A STUDY ON (k, 𝜇)'-ALMOST KENMOTSU MANIFOLDS

  • Li, Jin;Liu, Ximin;Ning, Wenfeng
    • Honam Mathematical Journal
    • /
    • v.40 no.2
    • /
    • pp.347-354
    • /
    • 2018
  • Let ${\mathcal{C}}$, ${\mathcal{M}}$, ${\mathcal{L}}$ be concircular curvature tensor, M-projective curvature tensor and conharmonic curvature tensor, respectively. We obtain that if a non-Kenmotsu ($k,{\mu}$)'-almost Kenmotsu manifold satisfies ${\mathcal{C}}{\cdot}{\mathcal{S}}=0$, ${\mathcal{R}}{\cdot}{\mathcal{M}}=0$ or ${\mathcal{R}}{\cdot}{\mathcal{L}}=0$, then it is locally isometric to the Riemannian product ${\mathds{H}}^{n+1}(-4){\times}{\mathds{R}}^n$.

CONHARMONICALLY FLAT FIBRED RIEMANNIAN SPACE II

  • Lee, Sang-Deok;Kim, Byung-Hak
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.441-447
    • /
    • 2002
  • We show that the conharmonical1y flat K-contact find cosymplectic manifolds are local1y Euclidean. Evidently non locally Euclidean conharmonically flat Sasakian manifold does not exist. Moreover we see that conharmonically flat Kenmotsu manifold does not exist and conharmonically flat fibred quasi quasi Sasakian space is locally Euclidean if and only if the scalar curvature of each fibre vanishes identically.