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#*-RICCI SOLITONS AND x*-GRADIENT RICCI SOLITONS
ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS

DIBAKAR DEY AND PRADIP MAJHI

ABSTRACT. The object of the present paper is to characterize 3-dimen-
sional trans-Sasakian manifolds of type («, 8) admitting *-Ricci solitons
and *-gradient Ricci solitons. Under certain restrictions on the smooth
functions o and B, we have proved that a trans-Sasakian 3-manifold of
type (a,8) admitting a *-Ricci soliton reduces to a S-Kenmotsu mani-
fold and admitting a *-gradient Ricci soliton is either flat or *-Einstein
or it becomes a S-Kenmotsu manifold. Also an illustrative example is
presented to verify our results.

1. Introduction

The study of Ricci solitons is a very interesting topic in differential geometry
and physics. The notion of Ricei soliton was introduced by Hamilton [11] as a
natural generalization of Einstein metrics. A Ricci soliton (g, V,\) is defined
on a Riemannian manifold (M, g) by

1
(1) §£VQ+S:/\g,

where £y g denotes the Lie derivative of the Riemannian metric g in the di-
rection of the vector field V', S is the Ricci tensor associated to g and A is a
constant. The Ricci soliton is said to be expanding, steady or shrinking ac-
cording as A is negative, zero or positive, respectively. Ricci solitons have been
studied by Wang ([20,21]) and many others on certain class of almost contact
metric manifolds.

In 1959, Tachibana [17] introduced the notion of *-Ricci tensor on almost
Hermitian manifolds. Later in [10], Hamada defined the *-Ricci tensor of real
hypersurfaces in a non-flat complex space form by

() SXY)=g(QUX.Y) = S (trace[s 0 R(X, 6Y)}).
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626 D. DEY AND P. MAJHI

where Q* is the (1,1) *-Ricci operator for any vector fields X, ¥ on M. The
x-scalar curvature is denoted by r* and is defined by r* = trace(Q*).

Definition. A Riemannian manifold (M, g) of dimension n > 2 is called *-
FEinstein, if the *-Ricci tensor S* satisfies the relation

S* = g,
where p is a constant.

In 2014, Kaimakamis and Panagiotidou [12] introduced the notion of *-Ricci
soliton in non-flat complex space forms just by replacing the Ricci tensor S in
(1) with the *-Ricci tensor S*, which is given by

1
(3) 5£V9+S* = Ag.

They have proved that for real hypersurfaces in CP™, n > 2, (g,£, \) cannot be
a x-Ricci soliton. Further they proved that a real hypersurface in CH™, n > 2,
admitting a *-Ricci soliton with the potential vector field £ is locally congruent
to a geodesic hypersurface. This notion has been studied by Ghosh and Patra
[9].

Let (M, ¢,£,m,g) be a (2n + 1)-dimensional almost contact metric manifold
[1]. Then, the product M = M x R has a natural almost complex struc-
ture J, which makes (M,G) an almost Hermitian manifold, where G is the
product metric. The geometry of the almost Hermitian manifold (M, J,G)
dictates the geometry of the almost contact metric manifold (M, ¢, &, n,g) and
gives different structures on M like Sasakian structure, quasi-Sasakian struc-
ture, Kenmotsu structure and others (see [1], [3] and [13]). It is known that
there are sixteen different types of structures on the almost Hermitian manifold
(M, J,G) [8], and recently, using the structure in the class Wy on (M, J,G) a
structure (¢,&,n,g,a, 3) on M called trans-Sasakian structure was introduced
[15], which generalizes Sasakian structure and Kenmotsu structure on almost
contact metric manifolds ([3], [13]), where «, 8 are smooth functions defined
on M. Since the introduction of trans-Sasakian manifolds, important contri-
butions of Blair and Oubifia [3] and Marrero [14] have appeared to study the
geometry of trans-Sasakian manifolds. In general, a trans-Sasakian manifold
(M, ¢,&,1n,9,a,8) is called a trans-Sasakian manifold of type (a, 8) and trans-
Sasakian manifolds of type (0,0), («,0) and (0, () are called a cosymplectic,
an a-Sasakian and a f-Kenmotsu manifolds, respectively, provided «, f € R
[19]. Marrero [14] has shown that a trans-Sasakian manifold of dimension > 5
is either a cosymplectic manifold, an a-Sasakian manifold or a g-Kenmotsu
manifold. Since then there is an attention on studying the geometry of 3-
dimensional trans-Sasakian manifolds only. In ([4-6]), authors have studied
3-dimensional trans-Sasakian manifolds with some restrictions on the smooth
functions «a, 3.
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Throughout the paper we assume that the smooth functions o and (3 satisfy
the condition

(4) ¢ grad o = grad .
Then it follows that
(5) XB+(¢9X)a=0

and hence £ = 0.

Example 1.1. In [7], the authors have constructed an example of a 3-dimen-
sional trans-Sasakian manifold. They consider M = {(z,y,2) € R3 : z # 0},
where (z,y, z) are the standard coordinates in R3. The vector fields

0 0 _, 0 0
or Vo T oy s
are linearly independent at each point of M. Let g be the Riemannian metric
defined by

ep=e *(—

glei,e1) = glez, e2) = g(es, e3) =
gler,e2) = glez,e3) = g(er, e3) =

ez,
Let n be the 1-form defined by n(X) = ¢g(X, e3) for any vector field X. Let ¢
be the (1,1) tensor field defined by

d(e1) = ez, ¢(e2) = —e1, ¢(e3) =0.
Then we have
¢*(X) = =X +1(X)es,
9(¢X,0Y) = g(X,Y) — n(X)n(Y)
for any vector fields X, Y. For es = ¢, they have shown that (M, ¢,£,n,g)
forms a trans-Sasakian manifold of type (o, 8), where o = %e_zz and 5 = 1.

Then it follows that ¢ grad o = —e~2?*¢pe3 = 0 = grad . Thus the existence of
trans-Sasakian manifolds of type («, ) satisfying (4) is verified.

Since trans-Sasakian manifolds generalize a large class of almost contact
metric manifolds, we consider the notion of *-Ricci soliton and *-gradient Ricci
soliton in the framework of 3-dimensional trans-Sasakian manifolds of type
(, 8). Finally an illustrative example is presented to verify our results.

2. Preliminaries

Let (M, ¢,&,m, g) be a 3-dimensional almost contact metric manifold, where
¢ is a (1,1)-tensor field, ¢ a unit vector field and 7 the smooth 1-form dual to
& with respect to the Riemannian metric g satisfying

(6) PP =-T+n®E nE) =1, ¢£=0,n0¢p=0

and

(7) 9(6X, 0Y) = g(X,Y) = n(X)n(Y),
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X,Y € x(M), where x(M) denotes the Lie algebra of smooth vector fields on
M [1]. If there are smooth functions «, 8 on an almost contact metric manifold

(M, ¢,&,n,g) satisfying
8)  (Vx@)Y = a(g(X,Y){ —n(Y)X) + B(9(¢X,Y)E — n(Y)dX),

X,Y € x(M), then it is said to be a trans-Sasakian manifold, where V is
the Levi-Civita connection with respect to the metric g ([3], [14], [16]). We
shall denote the trans-Sasakian manifold by (M, ¢,&,n, g, a, §) and it is called
trans-Sasakian manifold of type (a, 8). From (8) it follows that

(9) Vx§=—agpX + B(X —n(X)E),

(10) (Vxn)Y = —ag(¢X,Y) + Bg(¢X, ¢Y).
A trans-Sasakian manifold is said to be

e cosymplectic or co-Kaehler if a« = 8 =0,

e quasi-Sasakian if § =0 and £(a) = 0,

e a-Sasakian if « is a non-zero constant and 8 = 0,
e [-Kenmotsu if &« = 0 and [ is a non-zero constant.

Therefore, trans-Sasakian manifolds generalize a large class of almost contact
manifolds. From [4] we know that for a 3-dimensional trans-Sasakian manifold
(11) 208 4+ o = 0.

If M satisfies the condition (2), then from [4] we have

(12)S(X,Y) = (5 = (&% = B)g(X,Y) = (5 = 3(a® = B))m(X)n(Y),

R(X,Y)Z = (5 — 2(a® = B))(g(Y. 2)X = g(X. 2)Y)

— 9(¥, 2)(5 = 3(a® = 82))m(X)s
+9(X. 2)(5 = 3(a” = B)n(Y )
~ (5 = 3(a? = B))m(YIn(2) X
(13) + (5 = 3(a* = B)(X)n(Z)Y.
From (12) we get
(14) S(X,€) = 2(a* = B2)n(X)
and from (13) it follows that
(15) R(X,Y)E = (0 = B)(n(Y)X —n(X)Y),

(16) R X)Y = (o® = %) (9(X,Y)E = n(Y)X).
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3. *-Ricci soliton

In this section we consider the notion of *-Ricci soliton in the framework of
3-dimensional trans-Sasakian manifold. Before proving our main Theorem in
this section, we first state and prove the following:

Lemma 3.1. In a 3-dimensional trans-Sasakian manifold satisfying (4), the
x-Ricci tensor S* is given by

N r
(17) SUXY) = (5 = 2(a® = ) (g(X,Y) = n(X)n(Y))
for any vector fields X, Y on M.

Proof. Substituting Y = ¢Y and Z = ¢Z in (13) we obtain

(18) R(X,9Y)pZ = (g —2(a?=B*)(9(Y, 2)X = (Y )n(Z)X — g(X,$Z)¢Y).

Now taking the inner product of the above equation with W and then con-
tracting Z and W we complete the proof. ([

Remark 3.2. It is important to note that the x-Ricci tensor is not necessar-
ily symmetric. From Lemma 3.1, it is clear that the *-Ricci tensor S* of
a 3-dimensional trans-Sasakian manifold satisfying (4) is symmetric, that is,
S*(X,Y) = S*(Y, X) for all vector fields X, Y on M. Therefore, the Ricci
soliton equation is consistent in this setting.

Theorem 3.3. A 3-dimensional trans-Sasakian manifold (M, ¢,£,n,g,a, )
satisfying the condition (4) and admitting x-Ricci soliton reduces to a 3-Ken-

motsu manifold, provided (ér — 4€(a? — %)) — B(r — 4(a? — B?)) # 0.

Proof. Substituting the value of S* from (17) in (3) we have
(Lvg)(X,Y) = (2 = r +4(a” = %))g(X,Y)

(19) + (1 —4(a® = B2))n(X)n(Y).

Differentiating the above equation covariantly along any vector field Z and
using (10) we obtain

(VzLvg)(X,Y) = (—2Zr +4Z(a® = ) (9(X,Y) — n(X)n(Y))
+(r—4(a® = §))[~ag(¢Z, X)n(Y) + Bg(X. Z)n(Y)
(20) —an(X)g(¢Z,Y) + n(X)g(Z,Y) = 28n(X)n(Y)n(Z)]-
It is well known that ([22, p. 23])
(£vVxg— £xVvg— Vi xg)Y,2)
= —g(£vV)(X,Y), Z) —g((£vV)(X, Z),Y).

Since g is parallel with respect to the Levi-Civita connection V, then the above
relation becomes

21 (Vx£vg)(Y,2) = g((£vV)(X,Y), Z) + g((£vV)(X, 2),Y).
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Since £V is symmetric, then it follows from (21) that
1 1
g(LvV)(X,Y), 2) = S (Vx Lvg)[Y. Z2) + 5 (Vy Lvg)(X, Z)

(22) (Vz£Lyg)(X,Y).

_!
2
Using (19) in (22) we have
20((£vV)(X,Y), Z) = (—=Xr +4X(a® = ) (9(Y, Z) = n(Y)n(Z))
+(r —4(a” = %)) (~ag(6X,Y)n(2)
+ B9(X,Y)n(Z) — ag(¢X, Z)n(Y')
+ B9(X, Z)n(Y') = 28n(X)n(Y)n(Z))
+(=Yr+4Y (a® = 5%))(9(X, Z) = n(X)n(2))
+(r —4(a® = B%))(—ag(eY, X)n(2)
+ B9(X,Y)n(Z) — ag(¢Y, Z)n(X)
+ Bg(Y, Z)n(X) = 28n(X)n(Y)n(Z))
— (=Zr+4Z(a® = ) (9(X,Y) = n(X)n(Y))
= (r—4(a® = §?))(~ag(6Z, X)n(Y)
+B89(Z, X)n(Y) — ag(¢Z,Y)n(X)
(23) + Bg(Y, Z)n(X) — 28n(X)n(Y)n(Z)),
which implies
2(LvV)(X,Y) = (Dr —4D(a® = ) (9(X,Y) = n(X)n(Y))
— (X7 —4X(a® = B))(Y —n(Y)¢
— (Yr —4Y (a? = %))(X — n(X)¢
+(r —4(a” = 5%))(289(X, )€ — 2an(X)pY
(24) = 2am(Y)¢X = 28n(X)n(Y)E),

where D denotes the gradient operator. Now, replacing Y by ¢ in the foregoing
equation we get

~— ~—

(25) (£4V)(X,€) = —5 (6 —4€(a> ~ 7)) (X ~n(X)€) ~alr—4(a”  57))6 X.

Differentiating (25) covariantly with respect to Y yields
1
Vy(LvV)(X,§) = - S(Y(&r) — 4Y (€(a® = %)) (X = n(X)¢)

— S(Er — 4€(0? — B)(Vy X — (Vyn(X))E — n(X)Vy )
—(Ya)(r —4(a® — B*)pX — a(Yr —4Y (a® — B?))pX
(26) —a(r—4(a® - f%))VyoX.
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Again, using (9) and (25) we obtain
(Vy £ V)(X,€) = Vy (LvV)(X,6) -
= Vy (£vV)(X, &) + 5 (&r — 4¢(a® — %)) (Vy X
— 0Ty X)) +alr — 4(a® — 72)6(Ty X)
al£yV)(X,6Y) — LV T)(X,Y)
4 3 B0V~ (Er — 4€(0? ~ 2)(X ~n(X)¢)
(21) ~alr — 4(0? ~ §))9X].

which implies
Vy (£yvV)(X,§) = (Vy £vV)(X,§) — a(£v V) (X, 9Y) + B(£LvV)(X,Y)
+ 3OV (Er — 48(0? — )X — n(X)e)
T a(r - 4(a® - §2))6X]
— 5 — 4607 — ) (Vy X — n(Vy X))
Equating (26) and (28) and then using (9) and (10) we obtain
(Vy £vV)(X,€) = a(£49)(X, ) — B£yV)(X,Y)

— SOV I(Er — 48(e® — )X — n(X)e)

T a(r - 4(a® - B2)6X]

— (6 — 4E(0” — %)) (ag(6Y, X)E — gl
+280(X)n(Y )€ + an(X)6Y — Bn(X)Y)
(29) — V(@) — Y (E(0” ~ F))(X — n(X)e).
Using the foregoing equation in the following formula ([22, p. 23])

(LvR)(X,Y)Z = (Vx£vV)(Y, Z) — (Vy Ly V)(X, Z),
and using (25) we infer that

(LvR)(X,€)€ = (&r — 46(a” — 7)) (—adX + B(X —n(X)E))
+a?(r —4(a® = 7)) (X - n(X))

+SaBr —4(a? - B)6X
(30) + 3 (6(6r) — 4£(E(0 — F)(X —n(X)E).

Now, substituting ¥ = £ in (19) we obtain
(31) (£vg)(X,§) = 2An(X).

DO =

(28)

X, Y)¢

Ly V)(Vy X, §) — (£vV)(X, VyE)
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Now Lie-differentiating g(X, &) = n(X) along V and using the above equation
we get

(32) (LvmX — g(X, £vE) — 2Mn(X) = 0.

From the foregoing equation, we can easily obtain that n(£y€§) = —X and
(L£yn)€ = A. Again from (15) we have

(33) R(X, )& = (a® = B%)(X — n(X)¢).

Again, we have

(£vR)(X, )¢ = £vR(X,§)§ — R(£v X, §)§ — R(X, £v§)§ — R(X,§) £vE.
Using (15), (32) and (33) in the above equation we deduce that
(34)  (£vR)(X, 8¢ = (V(a® = B%) + 2X(a® — B%))(X — n(X)E).

Now, equating the value of (£Ly R)(X,€)¢ from (30) and (34) and then taking
the inner product with ¢.X, where X is not collinear with &, we get

(35)  ag(éX,X)[(&r - 4¢(a® — 5%)) — B(r — 4(a® — 5%))] =0,

which implies o = 0, since (ér — 4€(a? — %)) — B(r — 4(a? — 32)) # 0 by
hypothesis. If & = 0, then from (5) it follows that 8 = constant and hence the
manifold is S-Kenmotsu. This completes the proof. ([

4. x-gradient Ricci soliton

If the potential vector field V is gradient of some smooth function f, i.e.,
V = Df, then the %-Ricci soliton is called x-gradient Ricci soliton and the
equation (3) reduces to

(36) V23f =Ag— S*.
The proof of our Theorem in this section relies on the following Lemmas:

Lemma 4.1 ([2]). A contact metric manifold M?"* satisfying the condition
R(X,Y)¢ =0 for all X, Y is locally isometric to the Riemannian product of
a flat (n + 1)-dimensional manifold and an n-dimensional manifold of positive
curvature 4, i.e., E"1(0) x S™(4) for n > 1 and flat for n = 1.

Lemma 4.2. In a 3-dimensional trans-Sasakian manifold satisfying (4) the
following relation holds

(VyQ)E~ (VeQ)Y = = (5 —2(a” = B)(~ag¥ + BY — n(Y)¢))

(31) — (& 20 ~ )Y (V)
Proof. From Lemma 3.1 we can write
(38) QX = (5 —2(a = A))(X = n(X)8).

2
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Differentiating the above equation covariantly with respect to Y we get
" Yr
VyQ X = (5 —2Y(a® = B%))(X = n(X)9)
r
(39) + (5 = 2(a” = B)(Vy X = (Vyn(X))E = n(X)Vy ).
Therefore, using (38) and (39) we have

(VyQ")X = VyQ"X — Q" (Vy X)

= (A —av(@? - ) (X —n(X)8)
+ (5 —2(e® = B))(Ty X = (Tyn(X))¢ = n(X)Vy€)
(40) — (5 —2(a% = B))(Vy X —n(VyX)¢).

Replacing X by ¢ in the above equation and using the fact that n(Vy&) =0
and (9) we have

(1) (VyQ7)¢ = —(5 —2(a? = B)(—agY + B(Y = n(Y)2)).

Again substituting Y = ¢ in (40) and using (10) we get

(12) (V@) = (5~ 26(0” — )Y ~n(¥)e).
Now, substracting (42) from (41), the result follows. O

Lemma 4.3. In a 3-dimensional trans-Sasakian manifold satisfying (4) ad-
mitting a x-gradient Ricci soliton, the following relation holds

(43) RX,Y)Df = (VyQ")X — (VxQ")Y.
Proof. From (36) we can write
(44) VyDf =\Y — QY.

Differentiating the above equation covariantly along any vector field X we
obtain

(45) VxVyDf = AVyxY — VxQ*Y.
Interchanging X and Y in (45) we get
(46) VyVxDf = AVy X — VyQ* X.
Again from (44) we have
(47) Vixy Df = A(VxY = Vy X) — Q*(VxY — Vy X).
Therefore, the result follows by using (45)-(47) in
R(X,Y)Df =VxVyDf -VyVxDf -V xyDf. 0
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Theorem 4.4. A 3-dimensional trans-Sasakian manifold (M, $,&,n, g, o, B)
satisfying the condition (4) and admitting a *-gradient Ricci soliton is either
flat or x-Finstein or reduces to a $-Kenmotsu manifold.

Proof. Substituting X = £ in (43) we have
(48) R(EY)Df = (VyQ )¢ — (VeQ)Y.

Taking the inner product of the above equation with ¢ and using Lemma 4.2
we get

9(R(§,Y)Df, &) = 0.

Using (15) the above equation reduces to
(49) (0 =B ((Y)(Ef) =Y ) =0.
Case 1: If a2 — 82 = 0, then from (15) we have R(X,Y)¢ = 0. Therefore, it
follows from Lemma 4.1 that the manifold is flat.
Case 2: T Y f =n(Y)(&f), then we have Df = (£f)&. Substituting the value
of Df in (44) and using (9) we infer that

Y (E/NE+ (Ef)(—agY + B(Y —n(Y)E)) =AY — QY
which implies

(50) QY =(A=BENY + (BESNY) =Y (£)E + alsf)oY.
Comparing (38) and (50) we obtain

(51) A= BEf) = (5~ 2(a? - B),

(52) BENMY) =Y (§F) = =(5 = 2(a® = B)n(Y)
and

(53) aléf) =0.

The foregoing equation implies that either « = 0 or {f = 0. If @ = 0, then
from (5) it follows that the manifold is S-Kenmotsu. If £f = 0, then from
Y=n)(Ef) we get Y f =0 for any vector field Y and hence f is constant.
In this case the potential vector field V' being gradient of f becomes a null
vector. Therefore, from (3) we get S* = MAg, i.e., the manifold is *-Einstein.
This completes the proof. ([

5. Example

We consider the 3-dimensional manifold M = {(x,y,2) € R®: z # 0}, where
(x,y, 2) are the standard coordinates in R®. The vector fields

0 0 0
€1 =27, € =2—, €3 =2 —
0z

ox oy
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are linearly independent at each point of M. Let g be the Riemannian metric
defined by

gler,e1) = glez,e2) = g(es, e3) =
gle1,e2) = g(ez, e3) = gler, e3) =
Let n be the 1-form defined by n(X) = g(X, e3) for any vector field X. Let ¢
be the (1,1) tensor field defined by
Ple1) = —e2, d(e2) =e1, ¢(e3) =0.
Then we have
¢*(X) = =X +n(X)es,
9(0X,9Y) = g(X,Y) = n(X)n(Y)
for any vector fields X, Y. Hence the structure (¢,&,n,g) defines an almost
contact metric structure on M, where e3 = £. Now, after calculating we have
[e1,e3] = —e1, [e1,ea] =0 and [eq,e3] = —es.
The Riemannian connection V of the metric g is given by the Koszul’s formula
29(VxY, Z)=Xg(Y,Z)+Yg(Z, X) - Zg(X,Y)
—9(X,[Y, Z]) —g(V,[X, Z]) — g(Z,[X,Y]).
By Koszul’s formula we get
Vee1 =e€3, Ve ea=0, Veoe3=—e
Ve,e1 =0, Ve,ea =e3, Ve,e3 = —eo,
Vese1 =0, Veea =0, Vees=0.
From the above we found that o = 0, 8 = —1 and M?3(¢$,£,7,9) is a trans-

Sasakian manifold. This example is given in [18].
The Riemannian curvature tensor is given by

R(X,Y)Z =VxVyZ-VyVxZ — V[X,Y]Z~

Therefore, we have

R(61,62)61 = €9, R(el, 62)62 = —€1, R(e1, 62)63 = O,
R(ez,e3)er =0, R(ez,e3)ex = ez, R(ea,e3)es = —eo,
R(61,63)61 = €3, R(@l,eg)(ﬁg = O, R(el,eg)eg = —e].

Now, it is easy to see that
S*(e1,e1) = —1, S*(ez,e2) =—1 and S*(es,e3) =0.

Also,
(£esg)er,e1) = =2, (Leyg)(ea,e2) = =2 and (Leyg)(es, es3) = 0.
Therefore, tracing (3) we get A = —2. Hence (g, e3, —2) is a *-Ricci soliton on

M and the manifold is S-Kenmotsu. Thus, Theorem 3.3 is verified.
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