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Abstract. We find the characterizations of the curvatures of Legendre

curves and magnetic curves in Kenmotsu manifolds with C-parallel and

C-proper mean curvature vector fields in the tangent and normal bundles.
Finally, an illustrative example is presented.
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1. Introduction

Almost contact metric geometry has also been studied by several authors,
proving to be a source of nice examples and geometric behaviors for various
different topics. By imposing, contact one-form η is closed, it becomes almost
Kenmotsu manifold. By adding the condition such that almost complex stucture
J is integrable, we call it as Kenmotsu manifold [10].

Almost contact curves play a important role in differential geometry of almost
contact metric 3-manifolds. As a one dimensional submanifold, we may consider
almost contact curves, that is., almost Legendre curves are Frenet curves in
almost contact metric 3-manifolds which belongs to the almost contact distri-
bution. Several authors have studied almost contact curves in contact geometry
such as [8], [9], [11], [13], [15]. Baikoussis and Blair, have studied almost con-
tact curves in contact metric 3-manifold and gave the Frenet 3-frame in contact
3-manifold (see [2]).
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Let M be an almost contact metric manifold and γ(s) a Frenet curve in
M parametrized by the arc-length parameter s. α(s) is a function defined by
cos[α(s)] = g(T (s), ξ) is called as the contact angle. A slant curve is defined by
Cho at el. [3] the curve γ with constant contact angle. Especially, slant curves
with fixed contact angle as π

2 are called Legendre curves [1]. Legendre curves in
contact metric manifolds have been intensively studied under several different
points of view.

Srivastava [15] investigated the properties of almost contact curves in trans-
Sasakian 3-manifolds. Lee [11] find equivalent conditions for a Legendre curve
with pseudo-Hermitian harmonic mean curvature vector field and proper pseudo-
Hermitian mean curvature vector field in Sasakian manifolds. Also the paper
gives us that characterized almost contact curves in a Sasakian manifold having
the following properties:

• a pseudo-Hermitian parallel mean curvature vector field
• a pseudo-Hermitian proper mean curvature vector field in the normal
bundle.

Recently, Inoguchi and Lee have studied almost contact curves in normal
almost contact metric 3-manifold and slant curves in normal almost contact
metric 3-manifolds (see [8], [9]).

In [5], Güvençe and Özgür author studied C-parallel and C-proper slant

curves in (2n+1)-dimensional trans-Sasakian manifolds. Moreover in [13] Özgür
consider C-parallel and C-proper Legendre curves in (2n+ 1)-dimensional non-
Sasakian contact metric manifolds.

On the other hand, Cabrerizo et al. have introduced a notion of magnetic
fields on three dimensional Sasakian manifolds as follows:

The magnetic trajectories are curves γ inMn that satisfy the Lorentz equation

∇γ′γ′ = ϕ (γ′) .

Majhi and Biswas apply this concept of magnetic curves to the Kenmotz man-
ifold as follows: A curve γ is said to be magnetic curve in a 3-dimensional
f -Kenmotsu manifold if ∇γ̇ γ̇ = ϕγ̇, where ∇ is the Levi-Civita connection (for
more details, see [4], [7]).

Motivated by the above studies in the present paper we consider Legendre
curves and magnetic curves in Kenmotsu manifolds with C-parallel and C-proper
mean curvature vector fields in the tangent and normal bundles.

Consider a regular curve γ in almost contact metric manifold (M,ϕ, ξ, η, g)
containing Kenmotsu manifold, the notion of C-parallel (resp., C-proper) can be
defined as follows [5]: The C-parallel mean curvature vector field H is defined by
∇γ̇H = λξ, where λ denotes a non-vanishing differentiable function on M and ∇
the induced Levi-Civita connection. Respectively, the C-proper mean curvature
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vector field vector field H is ∆H = λξ, where ∆ the operator of Laplacian of M .

For clarity, ∇⊥ and ∆⊥ stands for the normal connection and Laplacian in the
normal bundle, respectively. The condition ∇γ̇H = λξ does not imply ∇⊥H =
λξ, neither ∆γ̇H = λξ to ∆⊥

γ̇H = λH. We should consider ∇⊥
γ̇H = λξ and

∆⊥
γ̇H = λξ corresponding to ∇γ̇H = λξ and ∆γ̇H = λξ respectively.
Thus, in the normal bundle, we can naturally define the following notions:

H is said to be C-parallel (resp., C-proper) in the normal bundle if ∇⊥H = λξ
(resp., ∆⊥H = λξ) where ∆⊥ denotes the operator of covariant differentiation
in the normal bundle of M (see [11]).

Introducing the technical apparatus which is required for our framework, and
such manifolds have been extensively studied under several points of view in
[1], [10], [12], [16], and references cited therein. An exhaustive list of the main
results would be a task far beyond the aim of this paper.

The paper is organized as follows: After preliminaries in Section 3, in three
dimensional Kenmotsu manifolds, we consider Legendre curves with C-parallel
and C-proper mean curvature vector fields, respectively. In the final section, we
consider Magnetic curves with C-parallel and C-proper mean curvature vector
fields, respectively.

2. Preliminaries

Let γ be a curve in a 3-dimensional Riemannian manifold M which is param-
eterized by arc length, and let ∇γ̇ denote the covariant differentiation along γ
with respect to the Levi-Civita connection on M . The parameterized curve γ is
called as a Frenet curve if one of the following three cases hold:

• γ is of osculating order 1, i.e,∇TT = 0 (geodesic), T = γ̇. Here, · denotes
differentiation with respect to the arc parameter.

• γ is of osculating order 2, i.e., there exist two orthonormal vector fields
T (= γ̇), N and a non-negative functions κ (curvature) along γ such that
∇TT = κT , ∇TN = −κT .

• γ is of osculating order 3, i.e., there exist three orthonormal vectors T (=
γ̇), N , B and two non-negative functions κ(curvature) and τ(torsion)
along γ such that

∇TT = κN,

∇TN = −κT + τB,

∇TB = −τN.

With respect to the Levi-Civita connection, a Frenet curve of osculating order
3 for which k is a positive constant and τ = 0 is called a circle in M ; a Frenet
curve of osculating order 3 is called a helix in M if κ and τ both are positive
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constants and the curve is called a generalized helix if κ
τ is a constant.

Let γ be a unit speed Frenet curve of osculating order 3 in M . By a simple
calculations, it can be easily seen that

∇T∇TT = −κ2T + κ′N + κτB (1)

∇T∇T∇TT = −3κκ′T − (κ3 + κτ2 − κ′′)N + (2κ′τ + κτ ′)B = λξ, (2)

∇⊥
T∇⊥

T T = κ′N + κτB (3)

∇⊥
T∇⊥

T∇⊥
T T = −(κτ2 − κ′′)N + (2κ′τ + κτ ′)B (4)

(For more details see [5]).
Then we have

∇TH = −κ2T + κ′N + κτB,

∆H = ∇T∇T∇TT

= 3κκ′T + (κ3 + κτ2 − κ′′)N − (2κ′τ + κτ ′)B (5)

∆⊥H = ∇T∇T∇TT

= (κτ2 − κ′′)N − (2κ′τ + κτ ′)B (6)

Let γ be a non geodesic Frenet curve in a contact metric manifold M . In view
of [5], we have the following relations:

• γ is a curve with C-parallel mean curvature vector field H if and only if

−κ2T + κ′N + κτB = λξ (7)

• γ is a curve with C-proper mean curvature vector field H if and only if

3κκ′T + (κ3 + κτ2 − κ′′)N − (2κ′τ + κτ ′)B = λξ (8)

• γ is a curve with C-parallel mean curvature vector field H in the normal
bundle if and only if

κ′N + κτB = λξ or (9)

• γ is a curve with C-proper mean curvature vector field H in the normal
bundle if and only if

(κτ2 − κ′′)N − (2κ′τ + κτ ′)B = λξ, (10)

where λ is a non-zero differentiable function along the curve γ.

An almost contact manifold is defined by (2n+ 1)-dimensional differentiable
manifold M satisfying its structural group GL2n+1R of linear frame bundle is
reducible to U(n)× {1} (see [6]). This gives us a following crucial identities:

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1 (11)

ϕξ = 0, η ◦ ϕ = 0, η(X) = g(X, ξ) (12)
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g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), g(X,ϕY ) = −g(ϕX, Y ), (13)

for any vector fields X,Y ∈ χ(M) where I is the identity of the tangent bundle
TM,ϕ is a tensor field of (1, 1)-type, η is a 1-form, ξ is a vector field and g is a
metric tensor field (see [1]).

An almost contact metric manifold M2n+1(ϕ, ξ, η, g) is said to be a trans-
sasakian manifold if (M2n+1×R; J ;G) belongs to the class W4 of the Hermitian
manifolds, where J is the almost complex structures on M2n+1 × R defined
by, J(Z, f d

dt ) = (ϕZ − fξ, η(Z) d
dt ); where the pair J(Z, f d

dt ) denotes a tangent

vector to (M2n+1 ×R. Z and f d
dt being tangent to M2n+1(ϕ, ξ, η, g) are said to

be normal if the structure J is integrable. The necessary and sufficient condition
for (ϕ, ξ, η, g) to be normal is

[ϕ, ϕ] + 2ξ ⊗ η = 0,

where [ϕ, ϕ] is the Nijenhuis torsion of ϕ defined by

[ϕ, ϕ](X,Y ) = [ϕX, ϕY ] + ϕ2[X,Y ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ],

for any vector field Z on M2n+1 and smooth function f on M2n+1 × R. This
may be expressed by the condition

(∇Xϕ)(Y ) = α(g(X,Y )ξ − η(Y )) + β(g(ϕX, Y )ξ − η(Y )ϕX),

for smooth function α and β on M2n+1.
We say that (M,ϕ, ξ, η, g) is an Kenmotsu manifold if the covariant differen-

tiation of ϕ satisfies [10]:

(∇Xϕ)(Y ) = g(ϕX, Y )ξ − η(Y )ϕX, (14)

For an Kenmotsu manifold from (2.2) it follows that

∇Xξ = X − η(X)ξ (15)

In a three dimensional Riemannian manifold, we always have

R(X,Y )Z =g(Y,Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

− r

2
g(Y,Z)X − g(X,Z)Y ,

In a three dimensional Kenmotsu manifold, we have [14]
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R(X,Y )Z =(
r

2
+ 2)

(
g(Y,Z)X − g(X,Z)Y

)
− (

r

2
+ 3)

{
η(X)(g(Y,Z)ξ − g(ξ, Z)Y )

+ η(Y )(g(ξ, Z)X − g(X,Z)ξ)
}

S(X,Y ) = (
r

2
+ 2)g(Y,Z)X − (

r

2
+ 3)η(X)η(Y ),

where r is a scalar curvature of M .
From (2.5), we obtain

R(X,Y )ξ = −[η(Y )X − η(X)Y ],

and (2.11) yields

S(X, ξ) = −η(X).

3. Legendre Curves with C-parallel and C-proper mean curvature
vector fields in the tangent and normal bundles

Definition. A unit speed curve γ on a smooth manifold is called Legendre
curve if it satisfies η(T ) = 0.

Let γ : I ⊂ R → M be a non-geodesic Legendre curve of osculating order 3 in
a Kenmotsu manifold. By using the definition of a Legendre curve, we obtain

η(T ) = 0. (16)

η(N) = − 1

κ
. (17)

Theorem 3.1. There does not exist a non-geodesic Legendre curve γ : I ⊂ R →
M of osculating order 3, which has C-parallel mean curvature vector field in a
three dimensional Kenmotsu manifold M .

Proof. Let γ be a curve with C-parallel mean curvature vector field. Then (7)
it follows that

−κ2T + κ′N + κτB = λξ.

Taking inner product of the foregoing equation with T , we have

κ = 0.

Therefore γ is a geodesic. This completes the proof. □



On C-parallel Legendre and Magnetic curves 593

Theorem 3.2. Let γ : I ⊂ R → M be a non-geodesic Legendre curve of oscu-
lating order 3 in a three dimensional Kenmotsu manifold. Then γ has C-parallel
mean curvature vector field in the normal bundle if and only if

κ ̸= constant,

τ2 =
κ′2

κ2
(κ2 − 1),

ξ = − 1

κ
N − τ

κ′B,

and

λ = −κκ′.

Proof. If

κ ̸= constant,

then from (9), we get

κ′N + κτB = λξ. (18)

Then taking the inner product of (18) with N , we have

κ′ = λη(N). (19)

Using (17) in (19) and keeping in mind that κ ̸= 0, as γ is non-geodesic. We get

κ′ = λ(− 1

κ
),

and hence

κ′κ = −λ. (20)

Again taking inner product of (18) with B, we obtain

κτ = λη(B),

It follows that

η(B) =
κτ

−κκ′ = − τ

κ′ . (21)

Since ξ ∈ span{N,B}, then

ξ = η(N)N + η(B)B.

Using (17) and (21), we get

ξ = (− 1

κ
)N + (− τ

κ′ )B.

Also taking inner product of (18) with ξ, we have

κ′η(N) + κτη(B) = λ.
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Using (17) and (21) in the foregoing equation, we obtain

κ′(− 1

κ
) + κτ(− τ

κ′ ) = −κκ′.

Therefore

τ2 =
κ′2

κ2
(κ2 − 1).

If is κ constant, then from (20) we have

λ = 0,

which is a contradiction, as λ is non-zero differential function.
The converse statement is trivial. This completes the proof of the theorem. □

Theorem 3.3. Let γ : I ⊂ R → M be a non-geodesic Legendre curve of
osculating order 3 in a three dimensional Kenmotsu manifold. Then γ is a curve
with C-proper mean curvature vector field if and only if

κ = constant,

λ = −κ2(κ2 + τ2),

ξ = − 1

κ
N +

2κ′τ + κτ ′

κ2(κ2 + τ2)
,

and

κ2(κ2 + τ2)2 + (2κ′τ + κτ ′)2 = κ4(κ2 + τ2)2.

Proof. Let γ be a curve with C-proper mean curvature vector field. Taking inner
product of (8) with T , we have

κκ′ = 0.

Since γ is not geodesic (that is, κ ̸= 0), we get

κ′ = 0, (22)

which implies that κ is constant.
Again taking inner product of (8) with N , we have

κ3 + κτ2 − κ′′ = λη(N). (23)

Then using (17) and (22) in (23), we get

λ = −κ2(κ2 + τ2). (24)

Also taking inner product of (8) with B and using (24), yields

η(B) =
2κ′τ + κτ ′

κ2(κ2 + τ2)
. (25)

Since ξ ∈ span{N,B}, we obtain

ξ = − 1

κ
N +

2κ′τ + κτ ′

κ2(κ2 + τ2)
B.



On C-parallel Legendre and Magnetic curves 595

Since ξ is a unit vector, we have

η(N)2 + η(B)2 = 1. (26)

Using (17) and (25) in (26), we get

κ2(κ2 + τ2)2 + (2κ′τ + κτ ′)2 = κ4(κ2 + τ2)2. (27)

The converse statement is trivial. □

Theorem 3.4. Let γ : I ⊂ R → M be a non-geodesic Legendre curve of
osculating order 3 in a three dimensional Kenmotsu manifold. Then γ is a curve
with C-proper mean curvature vector field in the normal bundle if and only if

λ = κ(κ′′ − κτ2),

ξ = (− 1

κ
)N +

2κ′τ + κτ ′

λ
B,

and

η(N)2 + η(B)2 = 1.

Proof. Let γ is a curve with C-proper mean curvature vector field in the normal
bundle. Therefore from (10), we have

(κτ2 − κ′′)N − (2κ′τ + κτ ′)B = λξ,

Taking inner product of the foregoing equation with N , we have

κτ2 − κ′′ = λη(N). (28)

Using (17) in (28) yields

λ = κ(κ′′ − κτ2).

Again taking inner product of (10) with B, we get

η(B) = −2κ′τ + κτ ′

λ
.

Since ξ ∈ span{N,B}, we obtain

ξ = − 1

κ
N +

2κ′τ + κτ ′

λ
B.

Since ξ is a unit vector. Then

η(N)2 + η(B)2 = 1.

□

The converse statement is trivial. This completes the proof of the theorem.
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4. Magnetic curves with C-parallel and C-proper mean curvature
vector fields in the tangent and normal bundles

Definition. A unit speed curve γ on a smooth manifold is called magnetic
curve with respect to Levi-Civita connection if it satisfies ∇TT = ϕT .

Let γ : I ⊂ R → M be a non-geodesic magnetic curve of osculating order 3
in a three dimensional Kenmotsu contact metric manifold. From the definition
of a magnetic curve, we obtain

η(T ) =
√
1− κ2. (29)

η(N) = 0. (30)

η(B) = −κ
√
1− κ2

τ
. (31)

If κ = 1, then the curve is Legendre curve. We already discussed Legendre curves
with C-parallel mean curvature vector field and C-proper mean curvature vector
field in the previous Section. Therefore for the next section, we consider κ ̸= ±1.

Theorem 4.1. Let γ : I ⊂ R → M be a non-geodesic magnetic curve with cur-
vature κ ̸= ±1 of osculating order 3 in a three dimensional Kenmotsu manifold.
Then γ is a curve with C-parallel mean curvature vector field if and only if

κ = constant,

λ = − κ2

√
1− κ2

,

ξ =
√
1− κ2T +

κτ

λ
B,

and

η(T )2 + η(B)2 = 1.

Proof. Taking inner product of (7) with N and using (30), we get

κ′ = 0.

This implies

κ = constant. (32)

Again taking inner product of (7) with T and using (29), we have

λ = − κ2

√
1− κ2

. (33)

Also taking inner product of (7) with ξ , we obtain

η(B) =
κτ

λ
. (34)
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Since ξ ∈ span{T,B} and using (29) and (34), we get

ξ =
√
1− κ2T +

κτ

λ
B. (35)

Since ξ is a unit vector. Then

η(T )2 + η(B)2 = 1. (36)

The converse of the theorem is trivial. This completes the proof of the theorem.
□

Theorem 4.2. Let γ : I ⊂ R → M be a non-geodesic magnetic curve with cur-
vature κ ̸= ±1 of osculating order 3 in a three dimensional Kenmotsu manifold.
Then γ is a curve with C-proper mean curvature vector field if and only if

κ′′ = κ(κ2 + τ2), (37)

λ =
3κκ′

√
1− κ2

, (38)

ξ =
3κκ′

λ
T − 2κ′τ + κτ ′

λ
B, (39)

and

η(T )2 + η(B)2 = 1. (40)

Proof. Let γ be a curve with C-proper mean curvature vector field. Taking inner
product of (8) with N , we get

κ′′ = κ(κ2 + τ2).

Again taking inner product of (8) with T , we have

η(T ) =
3κκ′

λ
. (41)

Using (29) in (41) yields

λ =
3κκ′

√
1− κ2

.

Also taking inner product of (8) with B, we obtain

η(B) = −2κ′τ + κτ ′

λ
. (42)

Since ξ ∈ span{T,B} and using (41) and (42), we have

ξ =
3κκ′

λ
T − 2κ′τ + κτ ′

λ
B.

Since ξ is a unit vector. Thus

η(T )2 + η(B)2 = 1.

The converse of the theorem is trivial. This completes the proof of the theorem.
□
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Theorem 4.3. There does not exist a non-geodesic magnetic curve γ : I ⊂ R →
M of osculating order 3 in three dimensional Kenmotsu manifold with C-parallel
mean curvature vector field in the normal bundle.

Proof. Let γ have C-parallel mean curvature vector field in the normal bundle.
Taking inner product with T , we get

η(T ) = 0.

Therefore the curve is Legendre curve. Again from (29), we have

κ = ±1. (43)

Using (43) in (31) yields

η(B) = 0. (44)

Taking inner product of (9) with ξ and using (44), we get

λ = 0,

which is a contradiction, as λ is non-zero differential function. This completes
the proof. □

Theorem 4.4. There does not exist a non-geodesic magnetic curve γ : I ⊂ R →
M of osculating order 3 in three dimensional Kenmotsu manifold with C-proper
mean curvature vector field in the normal bundle.

Proof. If possible, let γ is a curve with C-proper mean curvature vector field in
the normal bundle. Taking inner product of (10) with N , we get

κ′′ = κτ2. (45)

Again taking inner product of (10) with B, we have

η(B) = −2κ′τ + κτ ′

λ
(46)

Also taking inner product of (10) with T , we obtain

η(T ) = 0. (47)

Then from (29) and (47) we have

κ = ±1. (48)

Using (45),(46) and (48) it follows that

η(B) = 0. (49)

Taking inner product of (10) with ξ and using (49) and (30) we get

λ = 0,

which is a contradiction. This completes the proof of the theorem. □
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5. Example

Let us consider the 3-dimensional manifold M = {(x, y, z) ∈ R3 : (x, y, z) ̸=
(0, 0, 0)}, where (x, y, z) are the standard coordinates in R3. The vector fields

E1 = e−z ∂

∂x
, E2 = e−z ∂

∂y
, E3 =

∂

∂z
,

are linearly independent at each point of M . Let g be the metric defined by

g(Ei, Ej) = 1 for i = j,

= 0 for i ̸= j.

Here i and j runs from 1 to 3. Let η be the 1-form defined by η(Z) = g(Z,E3),
for any vector field Z tangent to M . Let ϕ be the (1, 1) tensor field defined by

ϕE1 = −E2, ϕE2 = E1, ϕE3 = 0.

Then we have

[E1, E2] = 0, [E1, E3] = E1, [E2, E3] = E2,

From Koszul’s formula, the Riemannian connection we have

∇E1
E1 = −E3, ∇E1

E2 = 0, ∇E1
E3 = E1,

∇E2
E1 = 0, ∇E2

E2 = −E3, ∇E2
E3 = E2,

∇E3
E1 = 0, ∇E3

E2 = 0, ∇E3
E3 = 0.

Since

∇Xξ = X − η(X)ξ

is satisfied for ξ = E3. Hence the manifold is a Kenmotsu manifold [5].

Consider the curve γ : I → M = R3 defined by γ(s) = (
√

2
3s,

√
1
3s, 1).

Thus

g(γ̇, E3) = η(γ̇)

= g(

√
2

3
E1 +

√
1

3
E2, E3)

= 0,

(50)

and

g(γ̇, γ̇) = g(

√
2

3
E1 +

√
1

3
E2,

√
2

3
E1 +

√
1

3
E2)

= 1. (51)
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Therefore the curve γ is Legendre curve.
Then by simple calculations

∇TT = ∇γ̇ γ̇ = ∇
(
√

2
3E1+

√
1
3E2)

(

√
2

3
E1 +

√
1

3
E2)

= −E3. (52)

Therefore the curvature κ is given by

κ = |∇TT | = 1, N =
1

κ
∇TT = −E3. (53)

Then

B = T ×N = −
√

1

3
E1 +

√
2

3
E2. (54)

Thus by simple calculations the torsion of the curve γ is τ = 0. Hence curve γ
satisfies

3κκ′T + (κ3 + κτ2 − κ′′)N − (2κ′τ + κτ ′)B = −E3 = (−1)ξ, for λ = −1. (55)

Moreover, the following equations hold:

κ = 1 = constant,

λ = −1 = −κ2(κ2 + τ2),

ξ = − 1

κ
N +

2κ′τ + κτ ′

κ2(κ2 + τ2)
B

and

κ2(κ2 + τ2)2 + (2κ′τ + κτ ′)2 = κ4(κ2 + τ2)2.

Therefore γ is a curve with C-proper mean curvature vector field. Thus the
theorem 3.3 is verified.
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