• Title/Summary/Keyword: KOSPI200옵션

Search Result 40, Processing Time 0.021 seconds

Using rough set to support arbitrage box spread strategies in KOSPI 200 option markets (러프 집합을 이용한 코스피 200 주가지수옵션 시장에서의 박스스프레드 전략 실증분석 및 거래 전략)

  • Kim, Min-Sik;Oh, Kyong-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.1
    • /
    • pp.37-47
    • /
    • 2011
  • Stock price index option market has various investment strategies that have been developed. Specially, arbitrage strategies are very important to be efficient in option market. The purpose of this study is to improve profit using rough set and Box spread by using past option trading data. Option trading data was based on an actual stock exchange market tick data ranging from 2001 to 2006. Validation process was carried out by transferring the tick data into one-minute intervals. Box spread arbitrage strategies is low risk but low profit. It can be accomplished by back-testing of the existing strategy of the past data and by using rough set, which limit the time line of dealing. This study can make more stable profits with lower risk if control the strategy that can produces a higher profit module compared to that of the same level of risk.

Comparison of methods of approximating option prices with Variance gamma processes (Variance gamma 확률과정에서 근사적 옵션가격 결정방법의 비교)

  • Lee, Jaejoong;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.181-192
    • /
    • 2016
  • We consider several methods to approximate option prices with correction terms to the Black-Scholes option price. These methods are able to compute option prices from various risk-neutral distributions using relatively small data and simple computation. In this paper, we compare the performance of Edgeworth expansion, A-type and C-type Gram-Charlier expansions, a method of using Normal inverse gaussian distribution, and an asymptotic method of using nonlinear regression through simulation experiments and real KOSPI200 option data. We assume the variance gamma model in the simulation experiment, which has a closed-form solution for the option price among the pure jump $L{\acute{e}}vy$ processes. As a result, we found that methods to approximate an option price directly from the approximate price formula are better than methods to approximate option prices through the approximate risk-neutral density function. The method to approximate option prices by nonlinear regression showed relatively better performance among those compared.

A Study of Option Pricing Using Variance Gamma Process (Variance Gamma 과정을 이용한 옵션 가격의 결정 연구)

  • Lee, Hyun-Eui;Song, Seong-Joo
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • Option pricing models using L$\acute{e}$evy processes are suggested as an alternative to the Black-Scholes model since empirical studies showed that the Black-Sholes model could not reflect the movement of underlying assets. In this paper, we investigate whether the Variance Gamma model can reflect the movement of underlying assets in the Korean stock market better than the Black-Scholes model. For this purpose, we estimate parameters and perform likelihood ratio tests using KOSPI 200 data based on the density for the log return and the option pricing formula proposed in Madan et al. (1998). We also calculate some statistics to compare the models and examine if the volatility smile is corrected through regression analysis. The results show that the option price estimated under the Variance Gamma process is closer to the market price than the Black-Scholes price; however, the Variance Gamma model still cannot solve the volatility smile phenomenon.

Profitability of Options Trading Strategy using SVM (SVM을 이용한 옵션투자전략의 수익성 분석)

  • Kim, Sun Woong
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.4
    • /
    • pp.46-54
    • /
    • 2020
  • This study aims to develop and analyze the performance of a selective option straddle strategy based on forecasted volatility to improve the weakness of typical straddle strategy solely based on negative volatility risk premium. The KOSPI 200 option volatility is forecasted by the SVM model combined with the asymmetric volatility spillover effect. The selective straddle strategy enters option position only when the volatility is forecasted downwardly or sideways. The SVM model is trained for 2008-2014 training period and applied for 2015-2018 testing period. The suggested model showed improved performance, that is, its profit becomes higher and risk becomes lower than the benchmark strategies, and consequently typical performance index, Sharpe Ratio, increases. The suggested model gives option traders guidelines as to when they enter option position.

Regularized Neural Network Training Algorithm Using Line Search Tunneling and It's Application to Option Pricing (선형탐색 터널링을 이용한 정규화 신경망 학습 알고리즘과 옵션가격결정에의 응용)

  • Kim, Bo-Hyeon;Jeong, Gyu-Hwan;Choe, Hyeong-Jun;Lee, Jae-Uk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.746-752
    • /
    • 2005
  • 본 논문에서는 다층 퍼셉트론 신경망 학습을 위한 새로운 두 단계 학습방법을 제안하고 이를 옵션 가격결정 모형에 응용하였다. 제안된 신경망 학습 알고리즘의 첫번째 단계는 Levenberg-Marquardt 알고리즘을 이용하여 빠르게 국소최적해를 찾는 것이고 두 번째 단계는 첫 번째 단계에서 찾은 국소최적해가 원하는 수준에 미치지 못할 경우 선형탐색 터널링을 이용해서 더 나은 해를 찾는 것이다. 이 두 단계를 반복적으로 수행함으로써 연결가중치 공간에서 구하고자 하는 해를 빠르고 안정적으로 찾을 수 있다. 현재 옵션가격결정 모형으로 많이 이용되고 있는 Black-Scholes 모형의 문제점을 극복하기 위해서 제안된 신경망 모형을 옵션가격결정 문제에 사용하였다. 이 모형을 KOSPI200 옵션 데이터로 실험한 결과 Black-Scholes 모형에 비해 검증오차를 60% 가량 줄일 수 있었다.

  • PDF

시뮬레이션을 이용한 주가연계상품(ELS)의 성과 추정

  • Min, Jae-Hyeong;Gu, Gi-Dong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.730-733
    • /
    • 2004
  • 본 연구에서는 넉아웃 옵션(Knock-out option)이 내재된 주가연계상품(ELS)의 성과를 시뮬레이션을 이용하여 추정한다. 옵션과 기초자산을 결합하여 구성되는 ELS는 상품개발 시점에서 그 수익구조가 결정되며, 실현수익률은 미래의 시장흐름에 의하여 결정된다. 현재 ELS는 옵션가격의 결정, 수익구조의 결정, 그리고 수익률 추정이라는 개별 과정이 각각 옵션발행자, 상품개발자, 고객관리자 등에 의하여 별도로 이루어지고 있는 실정이다. 본 연구에서는 이러한 개별 과정을 통합한 시뮬레이션 모형을 구축한 후, 이 모형의 결과(옵션가격, 수익구조, 실현수익률)를 기존 관행의 결과와 비교하여 본 연구에서 제안한 시뮬레이션 모형의 유용성을 제안한다. 분석 대상은 국내 장외파생상품 및 ELS의 기준이 되는 KOSPI 200 지수로 1990년 1월 3일부터 2002년 12월 30일까지의 1일 자료를 이용한다.

  • PDF

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

A Study on the Option Selection of Informed Traders: A Case of Korean Index Options (정보거래자의 옵션 선택에 관한 연구: 한국의 지수옵션시장을 중심으로)

  • Byung-Wook Choi
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.2
    • /
    • pp.33-49
    • /
    • 2023
  • Purpose - The purpose of this study is to examine the option selection and optimal trading of informed traders in KOSPI 200 options market based on the PIN (probability of informed trading) model of Easley et al.(2002). Design/methodology/approach - This study uses TAQ (trade and quote) data provided by Korean Exchanges (KRX) which contains all the bids and trades recorded during the continuous auction trading hours for the KOSPI 200 options between May 2019 and September 2020. Findings - First, there was no difference in the PIN between call and put options in the 2019 data, but the PIN of put options was slightly higher in 2020. Second, regardless of the type of option, the PIN was higher for in-the-money (ITM) options, and the PIN of out-of-the-money (OTM) options was the same as or slightly higher than that of at-the-money (ATM) options. Third, we found that the PIN decreases as trading liquidity increases, and fourth, the PIN increased sharply as the expiration date approached, especially for OTM options, while ITM and ATM options showed relatively weak effects. Fifth, for foreign and institutional investors, the periodicity of orders was observed in milliseconds, especially for foreign investors, where the periodicity of orders was clear and frequent in OTM options. The results suggest that the purpose of option trading varies depending on the moneyness from the perspective of the informed trader.

A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems (지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구)

  • Kim, Sun-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-32
    • /
    • 2010
  • Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the asymmetric GARCH models and artificial neural networks can significantly enhance the performance of the suggested volatility trading system, since artificial neural networks have been shown to effectively model nonlinear relationships.

A Forecasting System for KOSPI 200 Option Trading using Artificial Neural Network Ensemble (인공신경망 앙상블을 이용한 옵션 투자예측 시스템)

  • 이재식;송영균;허성회
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.489-497
    • /
    • 2000
  • After IMF situation, the money market environment is changing rapidly. Therefore, many companies including financial institutions and many individual investors are concerned about forecasting the money market, and they make an effort to insure the various profit and hedge methods using derivatives like option, futures and swap. In this research, we developed a prototype of forecasting system for KOSPI 200 option, especially call option, trading using artificial neural networks(ANN), To avoid the overfitting problem and the problem involved int the choice of ANN structure and parameters, we employed the ANN ensemble approach. We conducted two types of simulation. One is conducted with the hold signals taken into account, and the other is conducted without hold signals. Even though our models show low accuracy for the sample set extracted from the data collected in the early stage of IMF situation, they perform better in terms of profit and stability than the model that uses only the theoretical price.

  • PDF