• Title/Summary/Keyword: KKM theorem

Search Result 37, Processing Time 0.024 seconds

GENERALIZED VARIATIONAL-LIKE INEQUALITIES WITH COMPOSITELY MONOTONE MULTIFUNCTIONS

  • Ceng, Lu-Chuan;Lee, Gue-Myung;Yao, Jen-Chih
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.841-858
    • /
    • 2008
  • In this paper, we introduce two classes of generalized variational-like inequalities with compositely monotone multifunctions in Banach spaces. Using the KKM-Fan lemma and the Nadler's result, we prove the existence of solutions for generalized variational-like inequalities with compositely relaxed ${\eta}-{\alpha}$ monotone multifunctions in reflexive Banach spaces. On the other hand we also derive the solvability of generalized variational-like inequalities with compositely relaxed ${\eta}-{\alpha}$ semimonotone multi functions in arbitrary Banach spaces by virtue of the Kakutani-Fan-Glicksberg fixed-point theorem. The results presented in this paper extend and improve some earlier and recent results in the literature.

STUDY OF SOME GENERALIZED h-VARIATIONAL INEQUALITY PROBLEMS IN H-PSEUDOSPACE

  • Das, Prasanta K.;Mishra, Satya N.;Samal, Sapan K.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.475-496
    • /
    • 2021
  • The main aim is to define a new class of generalized h-variational inequality problems and its generalized h-variational inequality problems. We define the class of h-𝜂-invex set, h-𝜂-invex function and H-pseudospace. Existence of the solution of the problems are established in H-pseudospace with the help of H-KKM mapping theorem and HC*-condition of 𝜂 associated with the function h.

THE BROUWER AND SCHAUDER FIXED POINT THEOREMS FOR SPACES HAVING CERTAIN CONTRACTIBLE SUBSETS

  • Park, Sehie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.83-89
    • /
    • 1993
  • Applications of the classical Knaster-Kuratowski-Mazurkiewicz theorem [KKM] and the fixed point theory of multifunctions defined on convex subsets of topological vector spaces have been greatly improved by adopting the concept of convex spaces due to Lassonde[L]. Recently, this concept has been extended to pseudo-convex spaces, contractible spaces, or spaces having certain families of contractible subsets by Horvath[H1-4]. In the present paper we give a far-reaching generalization of the best approximation theorem of Ky Fan[F1, 2] to pseudo-metric spaces and improved versions of the well-known fixed point theorems due to Brouwer [B] and Schauder [S] for spaces having certain families of contractible subsets. Our basic tool is a generalized Fan-Browder type fixed point theorem in our previous works [P3, 4].

  • PDF

NEW GENERALIZED MINTY'S LEMMA

  • Kim, Seung-Hyun;Lee, Byung-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.819-827
    • /
    • 2009
  • In this paper, we introduce new pseudomonotonicity and proper quasimonotonicity with respect to a given function, and show some existence results for strong implicit vector variational inequalities by considering new generalized Minty's lemma. Our results generalize and extend some results in [1].

  • PDF

SETVALUED MIXED QUASI-EQUILIBRIUM PROBLEMS WITH OPERATOR SOLUTIONS

  • Ram, Tirth;Khanna, Anu Kumari;Kour, Ravdeep
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.83-97
    • /
    • 2022
  • In this paper, we introduce and study generalized mixed operator quasi-equilibrium problems(GMQOEP) in Hausdorff topological vector spaces and prove the existence results for the solution of (GMQOEP) in compact and noncompact settings by employing 1-person game theorems. Moreover, using coercive condition, hemicontinuity of the functions and KKM theorem, we prove new results on the existence of solution for the particular case of (GMQOEP), that is, generalized mixed operator equilibrium problem (GMOEP).

VECTOR VARIATIONAL INEQUALITY PROBLEMS WITH GENERALIZED C(x)-L-PSEUDOMONOTONE SET-VALUED MAPPINGS

  • Lee, Byung-Soo;Kang, Mee-Kwang
    • The Pure and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.155-166
    • /
    • 2004
  • In this paper, we introduce new monotone concepts for set-valued mappings, called generalized C(x)-L-pseudomonotonicity and weakly C(x)-L-pseudomonotonicity. And we obtain generalized Minty-type lemma and the existence of solutions to vector variational inequality problems for weakly C(x)-L-pseudomonotone set-valued mappings, which generalizes and extends some results of Konnov & Yao [11], Yu & Yao [20], and others Chen & Yang [6], Lai & Yao [12], Lee, Kim, Lee & Cho [16] and Lin, Yang & Yao [18].

  • PDF