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GENERALIZED VARIATIONAL-LIKE INEQUALITIES WITH
COMPOSITELY MONOTONE MULTIFUNCTIONS

Lu-CHUAN CENGT, GUE MYUNG LEE, AND JEN-CHIH YAOZ

ABSTRACT. In this paper, we introduce two classes of generalized vari-
ational-like inequalities with compositely monotone multifunctions in Ba-
nach spaces. Using the KKM-Fan lemma and the Nadler’s result, we prove
the existence of solutions for generalized variational-like inequalities with
compositely relaxed  — a monotone multifunctions in reflexive Banach
spaces. On the other hand we also derive the solvability of generalized
variational-like inequalities with compositely relaxed 7 — a semimonotone
multifunctions in arbitrary Banach spaces by virtue of the Kakutani-Fan-
Glicksberg fixed-point theorem. The results presented in this paper ex-
tend and improve some earlier and recent results in the literature.

1. Introduction

Variational inequality theory has become very effective and quite powerful
tool in the study of a large number of problems arising in differential equations,
mechanics, contact problems in elasticity, optimization and control problems,
management science, operations research, general equilibrium problems in eco-
nomics and transportation, unilateral, obstacle, moving, etc. Because of their
important applicability, variational inequality problems have been extensively
studied and generalized in various directions by many authors for a long time.
For more details, the reader is referced to [1-4,6-11,13-15,17-21] and the
references therein.

It is well-known that the monotonicity has always been being an effective
and important tool in the study of variational inequalities. Because of its useful
applicability, the monotonicity has been given many important generalizations
by some authors, for example, quasimonotonicity, pseudomonotonicity, relaxed
monotonicity, p-monotonicity, semimonotonicity, relaxed 1 — a monotonicity,
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and relaxed n — a semimonotonicity; see [2-9,14-16,19-21] and the references
therein. In 1997, Verma [14] studied a class of nonlinear variational inequali-
ties with p-monotone and p-Lipschitz mappings in reflexive Banach spaces and
gave some existence theorems of solutions. Subsequently, Chen [3] introduced
a class of variational inequalities with semimonotone mappings in nonreflex-
ive Banach spaces and obtained existence theorems of solutions by using the
Kakutani-Fan-Glicksberg fixed-point theorem. Recently, Fang and Huang [6]
introduced two concepts of relaxed n — o monotonicity and relaxed n — a semi-
monotonicity as well as two classes of variational-like inequalities with relaxed
7 — a monotone mappings and relaxed n — « semimonotone mappings. Using
the KKM technique, they proved the existence of solutions for variational-like
inequalities with relaxed 7 — « monotone mappings in reflexive Banach spaces.
Moreover, they also derived the solvability of variational-like inequalities with
relaxed  — a semimonotone mappings in arbitrary Banach spaces by means of
the Kakutani-Fan-Glicksberg fixed-point theorem.

In this paper, we introduce two classes of generalized variational-like in-
equalities with compositely monotone multifunctions in Banach spaces. Using
the KKM-Fan lemma and the Nadler’s result, we prove the existence of solu-
tions for generalized variational-like inequalities with compositely relaxed n—«
monotone multifunctions in reflexive Banach spaces. On the other hand, we
also derive the solvability of generalized variational-like inequalities with com-
positely relaxed n — a semimonotone multifunctions in arbitrary Banach spaces
by virtue of the Kakutani-Fan-Glicksberg fixed-point theorem. The results pre-
sented in this paper extend and improve some earlier and recent results in the
literature including [2,3,6,8,13-15].

Throughout this paper, we will denote by “—” and “—” the strong conver-
gence and weak convergence, respectively.

2. Generalized variational-like inequalities with compositely
relaxed 7 — a monotone multifunctions

In this section, suppose that X is a real Banach space with dual space X*
and that K is a nonempty closed convex subset of X. Let us denote by 2%
and 2%~ the collection of all nonempty subsets of X and the collection of all
nonempty subsets of X*, respectively.

Definition 2.1. Let A : X* - X* and n : K x K — X be two mappings,
let V:K — 2K and H : K x K — 2X" be two vector multifunctions, and let
a : X - R be a real function with a(tx) = tPa(z), Vt > 0, z € X, where
p > 11is a constant. Then H and V are said to be compositely relaxed n — «
monotone with respect to A if for each z,,z2 € K,

(1) (Agl_Aé.?an(mlax?)) > Of(ﬁ?l—ﬂig), Vz% € V(x’t)a 52 € H(mi:zi): 1= 132

Remark 2.1. Fang and Huang [6] introduced and considered the following con-
cept of relaxed n — & monotonicity:
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A mapping T : K — X* is said to be relaxed n — a@ monotone if there exist
a mapping 77 : K x K — X and a real function a : X — R with a(tz) = tPa(z)
for all t > 0 and z € X such that

(Tx —Ty,n(x.y)) 2 alz —y), Vr,y€K,

where p > 1 is a constant.

Obviously, it is easy to see that our compositely relaxed n — a monotonic-
ity is a set-valued version generalization of Fang and Huang’s relaxed n — «
monotonicity.

Definition 2.2. Let f : K — RU {+oc} be a function.
(i) f is said to be convex if for each z,y € K and t € [0, 1], one has

fltr + (1 =t)y) <tf(z) + (1 -1)f(y);

(ii) f is said to be concave, if the function — f is convex.

Lemma 2.1 (See [4]). Let X.Y and Z be real topological vector spaces, K and
C be nonempty subsets of X and Y, respectively. Let H : K x C = 2%, V :
K — 2¢ be multivalued maps. If both H and V are upper semicontinuous with
compact values, then the multivalued map T : K — 27 defined by

T(x) = U H(x,z) = H(z,V(z))
eV {x)

18 upper semicontinuous with compact values.

Lemma 2.2 (Nadler’s theorem [12]). Let (Y, ||-||) be a normed vector space and

H(-,-) be a Hausdorff metric on the collection CB(Y") of all nonempty, closed
and bounded subsets of Y, induced by a metric d in terms of d(u,v) = |ju — v||,

which is defined by

A~

H(A,A) = max(sup inf |ju — v||,sup ing fu — v|]),

wEA vEA vEA UE

for A and A in CB(Y). If A and \ are compact sets in Y, then for each
u € A, there exists v € A such that

lu — v|| < H(A,A).

Definition 2.3. (i) See [17]. Let 7 : K - X* and n: K x K — X be two
mappings. 1 1s said to be n-hemicontinuous if, for any fixed z,y € K, the
mapping f : [0,1] = (—oc, +00) defined by f(t) = (T'(x + t{y — z)),n(y, z)) is
continuous at 01:

(ii) A nonempty compact-valued multifunction T : K — 2% is called H-
uniformly continuous if for any given £ > 0 there exists § > 0 such that for any
T,y € K with ||z — y|| < § there holds

et

H(Txz,Ty) < &,
where H is the Hausdorff metric defined on CB (X™).



844 LU-CHUAN CENG, GUE MYUNG LEE, AND JEN-CHIH YAO

Let D be a nonempty subset of a topological vector space Y. A mul-
tivalued map F : D — 27 is called a KKM map if for each finite subset
{33'1,.'172,...,.'3”} (,;.—‘ Da

n
co{zy.x2....,2} C U F(z;),

=1

where co{zy,x2,...,z,} denotes the convex hull of {z,,z2,...,2,}.

Lemma 2.3 (KKM-Fan’'s lemma [5]). Let D be an arbitrary nonempty subset
of a Hausdorff topological vector space Y. Let the multivalued mapping I :
D — 2Y be a KKM map such that F(x) is closed for all z € D and is compact
for at least one x € D. Then

ﬂ F(z) #0.

rebh

Theorem 2.1. Let K be a nonempty, closed and convez subset of a real Banach
space X. Let A : X* — X* be a continuous mapping, f : K - RU {400}
be a proper convexr function and n : K x K — X be a mapping such that
(@) (A&, n(.,y)) : K — R is convex for each (€,y) € X* x K fized, and (b)
(A, n(z,z)) =0, V(é,2) e X* x K. Let V: K 52X and H: K x K — 2X°
be two upper semicontinuous mappings with compact values such that H and

V' are compositely relazed 1 — o monotone with respect to A. If the multivalued
map T : K — 2% defined by

T(z)= ] H(x,2)=H(z,V(z))
2€V ()

is H ~uniformly continuous, then the following are equivalent:
(1) there exist xg € K, 2o € V(xg) and & € H(xq, z9) such that

(2) (Ao, n(y,zo)) + fly) — flzo) 20, Vye€K;
(ii) there exists xqg € K such that

(3) (A& n(y, z0))+f(y)—flxe) > aly—=a), Vye K, z€V(y), £€ H(y,2).
Proof. Suppose that there exist xg € K, 29 € V(zq) and & € H(xq, 29) such
that

(A&Jan(yaa())) +f(y) "f('TO) 207 Vy € K.

Since H and V are compositelyv relaxed 17 — @ monotone with respect to 4, we
have

(A€ — Ao. n(y, x0)) = aly — o)
forally € K, z € V(y) and £ € H(y, z). which hence implies that
a(y — zo) + (A&, 1y, z0)) + f(y) ~ f(zo)

aly — xp) <
< (A& n(y-x0)) + Fy) — f(xo)
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forally € K, z € V(y) and € € H(y, z); that is,

(A&, n(y, 20)) + f(y) — flxo) > aly — o)
forally e K,z € V(y) and £ € H(y, 2).
Conversely, suppose that there exists g € K such that
(A&, n(y, z0)) + f(y) — flzo) > aly — zo)

forally € K, z € V(y) and ¢ € H(y,z). For any given y € K, we know that
yr =ty+ (1 —t)xg € K, Vit € (0,1) since K is convex. Replacing y by y; in the
left-hand side of the above inequality, one deduces from assumptions (a)-(b)
that for each & € T(y:) = H(y:, V' (y¢))

tPa(y — zo) = alt(y — z0)) = afy: — 20)
< (A& myr, zo)) + f(ye) — flzo)
= (A&, nlty + (1 — t)zo, o)) + f(ty + (1 — t)zo) — fzo)
< H{A&. n(y, zo)) + (1 — t){ A&, n(z0, Z0))
+tf(y) + (1 —t)f(zo) — f(zo)
= t[(A&,n(y, z0)) + fly) — flzo)],
which hence implies that

(5a) (A&, n(y,zo)) + f(y) — flzo) > P aly — z0), V& € T(ye), t € (0,1).
gX*

(4)

We remark that according to Lemma 2.1 the multivalued mapping T : K —
defined by

U H(z,z) = H(z,V(z))

2V

is upper semicontinuous with (.ompact values. Hence T'(y;) and T(xq) are
compact, and from Lemma 2.2 it follows that for each fixed & € T'(y:) there
exists an (; € T(xq) such that

16 — Gell < H(T'(ye), T(z0))-
Since T'(zg) is compact, without loss of generality, we may assume that {; —
o € T(xo) as t —+ 0F. Since T is H-uniformly continuous and |ly; — xo|| =
tlly —xoll @ 0ast— 07, so H(T(y:),T(zg)) — 0 as ¢ —+ 0. Thus one has

1€ — &oll < 1|& — Gl + |1 — &l
< H(T(y:), T(xo0)) + |G = &]l = 0 ast — 0*.

Note that A is continuous. Hence A& — A& as t — 07. Thus we obtain

|(A£t,n(y,xo)) — (Ao, n(y, To))| = [(A& — Ao, n(y, z0))|
< ||A& — Aéllin(y, zo)ll > 0 ast— 07

Consequently, from (5a) we deduce that for any given y € K
(Ao, 1y, z0)) + f(y) — fxo) = 0.
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Next, we claim that there holds
(Aé'Oa ”7("%5170)) + f(’()) _ f(:EO) > 09 Vv € K.

Indeed, let v be an arbitrary element in K and set v; = tv + (1 — t)zq for each
t € (0,1). Then one has |ly; — vt]| = t|ly —v|| = 0 as t — 0". Hence from

the H-uniform continuity of T' it follows that H(Ty:, Tv,) — 0 ast — 0F. Let
{&: }ie(0,1) be the net chosen as above such that & — & as t — 0™. Since Ty,
and T'v; are compact, from Lemma 2.2 it follows that for each fixed & € Ty,
there exists & v; € T'v; such that

1€ = vell < H(Tye, Tor).

Consequently

llve — &oll < 1€ — el + ||& — ol
< H(Ty, Tve) + |6 - &l = 0 ast — 0t

Note that A is continuous. Thus letting ¢ — 01, we obtain

(A, m(v, 20)) — (Abo, n(v, 20))| = [(A7: — Ao, n(v,z0))
< 1Ay — Aolllin(v, o)) — 0.

Replacing y, y: and & in (5a) by v, v; and 7, respectively, one deduces that

<A7i: 77(7%370)) + f(’U) - f(wo) > tp_la(v - 370)) Vt € (0: 1)
Letting ¢t — 0% we immediately get

(Ao, (v, x0)) + f(v) — flz0) 2 0.

Thus according to the arbitrariness of v the assertion is valid.

Since §o € T(20) = U,ev(a) H(20,2) = H(zo,V(20)), there exists z €
V(xo) such that & € H(xzg,z9). Therefore, (i) holds. This completes the
proof. [

Remark 2.2. Theorem 2.1 generalizes Theorem 2.1 of Fang and Huang [6],
Theorem 2.1 of Verma [14] and Theorem 2.1 of Verma [15].

Theorem 2.2. Let K be a nonempty, bounded, closed and conver subset of
a real reflexive Banach space X, and let X* be the dual space of X. Suppose
there hold the following:

(i) for eachz € K, z € V() and £ € H(x, z) fized, (Al,n(z,")) : K = R is
weakly upper semicontinuous,

(ii) (A&, n(z,z)) =0 for each x € K and £ € X*;

(iii) for each (&,y) € X* x K fized, (A&, n(-,y)) : K = R is affine;

iv) f : K » RU {+00} is a proper, affine and lower semicontinuous
function;

(v) A: X* = X* is continuous, and « : X — R is weakly lower semicon-
Linuous.
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Suppose additionally that 17 : K — 2% and H : K x K — 2% are two
upper semicontinuous mappings with compact values such that H and V are
compositely relaxed 7 — a monotone with respect to 4. If the multivalued map
T : K — 2% defined by

T(z)= | H(z,2)=H(z,V(z))
eV {xr)
is ﬁ—uniformly continuous, then there exist ¢ € K, 3 € V(#) and € € H (z, 2)
such that A
(A€, n(y,2)) + fy) — f(2) 20, VyeKkK.

Proof. First we claim that for every finite subset £ of K, there exist T € coF,
ze V(z) and & € H(Z, z) such that
(A& n(y,2)) + fly) — f(&) >0, Vy € coE.
Indeed, let us define a vector multifunction F : coE — 2°°F as follows:
F(y) = {x € coF :3z € V(2), £ € H(z,z) such that
(A& nly,z)) + fly) — flz) 20}, Vy € coE.

From assumption (ii), one has F(y) # @ since y € F(y). The set F(y) is also
closed. Indeed, let {z,} C F(y) such that z, — z as n — oc. Hence, for each
n there exist z,, € V(x,) and &, € H(x,, z,) such that

(Agna"r](y%*rft)) a f(y) — f(zn) > 0.

Since V is upper semicontinuous with compact values, V' (coF) is compact.
Therefore, without loss of generality one deduces that 2z, — z € V(z) as
n — oo. On the other hand, since H is upper semicontinuous with compact
values, H(coF, V(coFE)) is compact. It follows without loss of generality that
&, - € € H(z,z). Now, let {y1,y2,...,¥»+ C coE and let us verify that
co{y1,Y2, .- ¥n} C Ui, Fyi). Let o € co{yr, 2,y ¥n}t, © = Doy Ai¥i
with A; > 0 and Y., A; = 1. Ctilizing assumptions (ii)-(iv), we obtain

0 = (A&, n(z, 7)) + f(z) — f(=)
= (A¢, n(z Xiyi, @) + f(Z Xiyi) — flz)

=) _Nild&nlix) + ) Xif(yi) — fl@)
1=1 i=1

_ Z M[(AE n(yi, ) + fly:) — F(2)].

This shows that

I

D Nl(A& lye, 2) + fyi) — fz)] = 0.

=1
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Therefore, there exists ¢ € {1,2,...,n} such that

(A&, n(yi,2)) + fys) — f(z) > 0.
Hence z € F(y;) C U;.":l F(y;). Consequently, from Lemma 2.3, we know that

myECOE F(y) 7& 0
Let T € (,ccor F'(y). Then for each fixed y € coE there exists §, € TZ =

H(z,V(Z)) such that
(Aly,n(y, Z)) + fly) — f(Z) > 0.
Let y =% + t(y — z),Vt € (0,1). Then, observe that

(A&y, (Y, Z)) + fy:) — f(Z)
= (A&, n(Z + t(y — ),7)) + f(Z +t(y — Z)) — f(Z)
= t(A&y,n(y, z)) + (1 — t)(A&y, n(Z, T))

+if(y) + (1 -t f(z) - f(2)
= t[(A&y,n(y, T)) + f(y) — F(T)).

Hence

(A&y,m(ys,T)) + f(y:) — f(T) > 0.

Since H and V are compositely relaxed 1 — a monotone with respect to A,
we have

(A& — ALy, n(ye,2)) > alye — Z) =tPa(y — ), V& e Ty, t€(0,1),
and so
< tPa(y — 7) + (A&, n(ye, Z)) + f(ye) — f(Z)
< (A&, n(y:, 2)) + fye) — F(Z).
Thus

(5b) (A&, n(ys, T)) + fye) — (&) > tPaly —Z), V& € Ty, t€(0,1).
Now observe that
(A&, n(yt, T)) + f(ye) — F(Z)
= (A&, n((1 ~ )7 + ty,Z)) + F((1 - £)Z + ty) — f(T)
= (1 = t)(A&,n(Z, ) + t{A&,n(y,2)) + (1 = ) f(Z) +tf(y) — f(Z)
= t[{A&, n(y,2)) + f(y) — f(@)],
which together with (5b), implies that

(5¢)  (A&,n(y,2) + f(y) = f(2) > Py — &), V& € Ty, t € (0,1).
We remark that according to Lemma 2.1 the multivalued mapping T : K —
2X" defined by
Tx = U H(z,z) = H(z,V(x))
z€V(z)
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is upper semicontinuous with compact values. Hence T'(y;) and T(Z) are com-
pact, and from Lemma 2.2 it follows that for each fixed & € T'(y;) there exists
an {; € T(z) such that

1€ — Gl < H(T (), T(2)).

Since T(Z) is compact, without loss of generality, we may assume that ¢, = € €
T(z)ast — 07. Since T is H-uniformly continuous and |{|y; —Z|| = t|ly—Z|| = 0
ast — 0%, s0 H(T(y;),T(x)) = 0 as t = 0. Thus one has

1€ — &l < W& — Gl + 11¢e — 2]
<H(T(y), T(@) +IG — €| = 0 ast—0*.
Note that A is continuous. Therefore letting ¢ — 01, we obtain
(A&, n(y, ) — (A& n(y, 2))] = (A& — A n(y, 2))]
< |14 — A&In(y, 2)]| - 0.
This together with (5¢), implies that
(A& n(y, ¥)) + fly) — flz) > 0.
Next we claim that there holds
(A€, n(v, 7)) + Flv) — f(Z) >0, Vv & coE.

Indeed, let v be an arbitrary element in coF and set vy = tv + (1 —¢)Z for each
t € (0,1). Then one has |jy; — v¢)] = t|ly — v|| — 0 as t - 0*. Hence from

the H-uniform continuity of T it follows that H(Ty:, Tvs) — 0 ast — 07. Let
{&}ie(0.1) be the net chosen as above such that & — § as ¢ — 0. Since Ty,
and Tv; are compact, from Lemma 2.2 it follows that for each fixed & € Ty,
there exists a v, € T'vy such that

1€ = 7ell < H(Tye, Twe).
Consequently
[lve = ElF < 116 — el + (1€ — €]
< H(Tys, Tv) + |6 — € 0 ast —0*.

Note that A is continuous. Thus letting t — 07, we obtain

(A, (v, 7)) — (A&, n(v, 2))] = (A — A& n(v, 2)

< Ay ~ Aélilin(v, 2))| = 0.

Replacing y, y; and & in (5¢) by v, vy and +¢, respectively, one has

(Ave,n(v, ) + f(v) = f(@) 2 tP " alv - 1), Vte(0,1),
which hence implies that

(A&, (v, £)) + f(v) - f(Z) > 0.

Thus, according to the arbitrariness of v the assertion is valid.
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Since £ € T(z) = U.eviz H(Z,2) = H(Z,V(Z)), it follows that there exists
zZ € V() such that £ € H(Z, 2). Therefore, the original assertion is valid.

Now, by Theorem 2.1 we conclude that for every finite subset F of K, there
exists £ € coE such that

(A&, n(y,z)) + fly) — f(Z) > aly—2), VyccoE, z€V(y), (€ H(y,z).

Second, we claim that there exists £ € K such that

(A,n(y, ) + fly) — f(&) > aly—2), VyeK, ze€V(y), (€ H(y,=z).

Indeed, since X is reflexive and K is a nonempty, bounded, closed and
convex subset of X, so K is compact with respect to the weak topology of X.
Let & be the family of all finite subsets of K. For each E € <, consider the

following set:

Mg = {z € K : (A, n(y,z)) + f(y) — f(z) > aly — z),
Vy € coE, z € V(y), £ € H(y,2)}.

Then one has Mg # { for each E € &. We shall prove that (\gcq Mg # 0,

where M, denotes the closure of E with respect to the weak topology of X.

For this, it suffices to show that the family {M .} pes has the finite intersection
property. Let E,F € Sand set G=FEUF € &, Then Mg C MgN Mp and it
follows that M oMM 5 # 0. This shows that the family {Mj;} pes has the finite
intersection property. Since K is compact with respect to the weak topology

of X, it follows that () EE%M—E # 0. Let £ € Ngeo M and for an arbitrary
y € K fixed, consider F = {y, #}. Since # € M, there exists {z,} C M p such
that {z,} C K, z, — & and for each n

(A€, 7(0,20)) + [(0) = f@n) > a(v ~ 22), Vo € coF, z € V(v), € € H(v,2).

In particular, whenever v = y, one derives for each n

(Al n(y, zn)) + fy) — flzn) 2 aly —z,), VzeV(y), £€ H(y,z).

Since f : K - RU{+4o0} is a proper, affine and lower semicontinuous function,
f is weakly lower semicontinuous. Note that a : X — R is weakly lower
semicontinuous, and that for each z € K, z € V(z) and £ € H(x,z) fixed,
(A€, n(z,-)) : K — R is weakly upper semicontinuous. Thus we conclude that
foreachy € K, z € V(y) and £ € H(y, z) fixed,

aly —z) < linl}infa(y — Tnp)

< limsup a(y — x,)

< llgqsogp[(Aé,n(y,mn)) + fly) — f(zn)]
< hﬂsolip(AE,n(y,xn)) + f(y) — liminf f(z,)
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that is,

(A, n(y, L)) + fly) — f(#) 2 aly - 1), Vye K, ze€V(y), £ € H(y,2).

Thus, the assertion is proved.
Now by Theorem 2.1 we infer that there exist £ € K, 2 € V(z) and £ €
H(z,2) such that

(A€, m(y,2)) + fly) — (&) >0, VyeK.
This completes the proof. O

If K is unbounded, then we have the following theorem under certain coer-
civity condition:

Theorem 2.3. Let K be a nonempty, unbounded, closed and convex subset of
a real reflexive Banach space X, and let X* be the dual space of X. Suppose
there hold the following:

(i) for each z € K, z € V() and € € H(x, 2) fized, (A&, n(z, ) : K = R is
weakly upper semicontinuous;

(ii) (A&, n(z,x)) =0 for each x € K and £ € X*;

(iii) for each (&,y) € X x K fized, (A€, n(-,y)) : K — R is affine;

iv) f : K — RU{+oc} is a proper, affine and lower semicontinuous
function;

(v) A: X" = X* is continuous, and o : X — R is weakly lower semicon-
tinuous.

Suppose additionally that V" : K — 2% and H : K x K — 2% are two
upper semicontinuous mappings with compact values such that H and V are

compositely relaxed n — o monotone with respect to A. If the multivalued map
T : K — 2% defined by

T(x)= |) H(x,2) = H(z,V(2))

:GV(J))

is H -uniformly continuous such that A and V™ are n-coercive with respect to A
and f; i.e., there exist 2o € K, z5 € V(xg) and & € H(xp, z9) such that
(‘460 — *‘4677}("‘50333)) + f(':[‘) - f(ﬂf(})

EET(x) (2o, )]

as ||z|] — 400, then there exist & € K, 2 € V(&) and £ € H(&, 2) such that

(A& nly,2)) + fly) — F(&) >0, Vye€K.
Proof. Let
K.,={ye K:l|y| <r}.

Consider the problem of finding =, € K, z, € V'(z,.) and &, € H(z,, z,) such
that

(6) (A&, n(v.x.)) + f(v) = f(z;) 20, VveK,.
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One can readily see that all conditions of Theorem 2.1 are fulfilled for nonempty,
bounded, closed and convex subset K, = K N B, where B, = {x € X : ||z|| <
r}. Thus according to Theorem 2.2 we know that problem (6) has one solution;
that is, there exist z, € K,., 2, € V(z,) and &. € H(z,, 2,) such that inequality
(6) holds. Choose r > ||zg|| with zg as in the coercivity condition. Then we
have

(A&, (20, 27)) + f(wo) — flzr) 2 0.

Moreover,

(A&, (o, zr)) + f(z0) — f(24)
— (A& — A& n(zo,z,)) + f(z0) — flzr) + (Ao, n(z0, z7))
< — (A& — A&, (2o, 7)) + f(2o) — f(zr) + || Aboll[|n(z0, T )]
(Ao — A& n(z0, 7)) + flzr) — f(20) +11A&|(]-
In(zo, z )|

{

(2o, z:)Il - [

Now, if ||z,|| = r for all r, we may choose r large enough such that the above
inequality and the n-coercivity of H and V with respect to A and f imply that

(Agran(anwr» + f($0) - f(mr) < 0,

which contradicts

(A&, n(zo, zr)) + f(xo) — f(zr) 2 0.

Hence there exists r such that ||z.|| < r. For any y € K, we can choose € > 0
small enough such that

e<l and z,+e(y—z,) € K,.
It follows from (6) that

e[(A&r,n(y, =) + f(y) — f(zr)]
= (1 — e)(A&, n(zr, z.)) + (A&, n(y, z,))

+ (1 —¢€)f(z,) +ef(y) - f(zr)
= (A&, n(zr + ey — 2,),2;)) + flzr +ely — ;) — f(z/)
> 0.

This implies that

(A& n(y, z»)) + f(y) — f(z) 20
for all y € K, and so problem (2) has a solution. This completes the proof. [

Remark 2.3. Theorems 2.2 and 2.3 generalize Theorems 2.2 and 2.3 of Fang
and Huang [6], the known results of Hartman and Stampacchia [10] and the
corresponding results of [8,13,15].
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3. Generalized variational-like inequalities with compositely
relaxed 7 — a semimonotone multifunctions

Throughout this section, let X be an arbitrary Banach space with its dual
space X, let X** denote the dual space of X*, and let K be a nonempty
closed convex subset of X**. Let us denote by 2% and 2% the collection of
all nonempty subsets of X* and the collection of all nonempty subsets of X**,
respectively.

Definition 3.1. Let A : A xX" = X" andn: K x K — X** be two mappings,
let V:K —=2¥ and H: K x K = 2% be two vector multifunctions, and let
a: X** — R be a real function with a(fr) = tPa(x), Vi > 0, x € X**, where
p > 11is a constant. Then H and V" are said to be compositely relaxed n — «
semimonotone with respect to A if the following conditions hold:

(a) for each fixed y € A, A(y.:) : A'* = X~ is continuous, and H and V
are compositely relaxed 7 — a monotone with respect to A(y, -); i.e., for each
x1,T9 € K,

(Aly,&1) — Aly, &2).m(x1, 22)) > alry — x2),
Vz; € ‘,(,El)i ‘Ez S H(miazi)a i = 1721

(b) for each fixed £ € X*, A(-.§) : K —» X* is completely continuous; i.e.,
for any net {x3}, 5 converges to zy in o(X**, X*) implies that {A(zg,£)}
converges to A(xg, &) in the norm topology of X*.

The above concept is a set-valued version generalization of the following
relaxed n — a semimonotonicity.

Definition 3.2 (See Definition 3.1 [6]). Let n: K x K — X** be a mapping
and let a : X** — R be a function with a(tz) = tPa(z) for all £ > 0 and
x € X**, where p > 1 is a constant. A mapping A: K x K - X* is said to be
relaxed 1 — a semimonotone if the following conditions hold:

(a) for each fixed r € K, ;1(:1", ) is relaxed 17 — a monotone; i.e.,

(A(z,y) — A(r,0),0(y,v)) > aly —v). VYy,veK;

(b) for each fixed v € A, ri(','u) is completely continuous; i.e., for any net
{zg}, xg converges to xg in o(X**, X*) implies that {A(xz,v)} converges to
A(zg,v) in the norm topology of X*.

Let A: K xX* - X*and np: K x K — X** be two mappings, f : K —
RU{+0o0} be a proper convex lower semicontinuous function, and V : K — 2%

and H : K x K — 2% be two vector multifunctions. We consider the following
problem: Find 2 € K, z € V' (z) and £ € H(z, 2) such that

(7) (A(2,8),n(v, 2)) + fv) — f(&) >0, YveK.

Theorem 3.1. Let X be a real Banach space and let K C X** be a nonempty,
bounded, closed and convezr subset. Let V : K — 2% and H : K x K — 2X°



854 LU-CHUAN CENG, GUE MYUNG LEE, AND JEN-CHIH YAO

be finite-dimensional upper semicontinuous mappings with compact values; i.e.,
for any finite-dimensional subspace L C X** V : K; — 25X and H : K, %
K; — 2% are upper semicontinuous mappings with compact values where
K; = KN L. Suppose there hold the following:

(1) n(z,y) + n(y,z) =0 for all 7,y € K;

(ii) for each y,v € K and £ € X™* fized, the mapping x — (A(y, &),n(x,v))
15 affine and lower semicontinuous;

(ili) f : K = RU {400} is a proper, affine and lower semicontinuous
function;

(iv) a: X** = R is conver and lower semicontinuous.

Suppose additionally that H and V are compositely relaxed n — o semimono-
tone with respect to A. If the multivalued map T : K — 2% defined by

T(z)= |J H(z,2)=H(z,V(z))
zeV(x)

is H-uniformly continuous, then there ezist £ € K, 3 € V(%) and £ € H(%, 3)
such that )
(A(Z,8),n(v, %)) + f(v) — f(2) 20, VveK.

Proof. Let L C X** be a finite-dimensional subspace with K; = K N L # 0.
For each y € K, consider the following problem: Find zg € Ky, 29 € V(o)
and & € H(xg, 29) such that

(8) (A(y3§0)7n(vax0)) T f('U) _ f(xO) Z 03 Yo € KL-

Observe that K C L is bounded, closed and convex, A(y, ) : X* = X* is
continuous, and H and V are compositely relaxed 7 — o monotone with respect
to A(y,-). Since assumptions (i) and (ii) guarantee that conditions (i)-(iii) in
Theorem 2.2 are fulfilled, from Theorem 2.2 it follows that problem (8) has
a solution; that is, there exist £ € K, 2 € V() and £ € H(Z,2) such that
inequality (8) holds.

Now, define a set-valued mapping I' : K; — 2% as follows:

I'(y) ={z € Kr, -3z € V(z), € € H(z,Z) such that
(A(y,&),n(v,z)) + f(v) — f(z) >0, Vv € K1}, Vye€ K.
It follows from Theorem 2.1 that, for each fixed y € K,
{zx € Kp: 3z V(x), £ € H(z, 2) such that

(A(y,&),n(v,z)) + fv) - f(z) 20, Vv e K}
={z € K1 : (A(y,£),n(v, )} + f(v) = f(z) 2 a(v - z),
Vve Kp,ze V(v),E € H(v,z)}.
Since every convex lower semicontinuous function in Banach spaces is weakly
lower semicontinuous, the proper convex lower semicontinuity of f and a and

assumption (ii) imply that I' : K; — 2¥Z has nonempty, bounded, closed and
convex values. We also know that I' is upper semicontinuous by the complete
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continuity of A(-,£). By the Kakutani-Fan-Glicksberg fixed-point theorem,
[’ has a fixed point g € Ky, ie., xg € I'(zg). Consequently, there exist
z0 € V(zo) and & € H(xq, zg) such that

(9) (A(zo,80),n(v, x0)) + f(v) — flzo) >0, Vve K.

Let
O ={LC X" :Lis finite dimensional with K N L # (}

and let
Wi ={z € K: (A(z.).n(v,z)) + f(v) — f(z) > a(v—1z),
Vo e Kp,ze V(v), 6 € H(v,2)}

for all L € U. By (9) and Theorem 2.1, we know that W is nonempty and
bounded. Denote by ¥, the o(X**, X*)-closure of Wy, in X**. Then, W is
o(X**, X*)-compact in X**,

For any L; € U,1 = 1,2,..., N, we know that Wn , C N;Wg., so {WL :
L € U} has the finite intersection property. Therefore, it follows that

ﬂ W #0.

Le
Let & € (Ve Wi # 0. We claim that there exist 2 € V(z) and £ € H(,3)
such that

(A(Z,€),n(v, 7)) + f(v) = f(£) 20, VveK.

Indeed, for each v € K, let L € § be such that v € K; and £ € K. Then,
there exists a net {x3} € W, such that 3 converges to Z in o(X™**, X*), which
implies by the definition of 17, that

<A(xﬁ7§)7n(vaml3)> + f(U) _‘ f(.L',;—}) Z (!(’U T x_ﬁ)a vz S L_.'(,U),g € H(’U,Z).
It follows that
(A(#,6),n(v,2)) + f(v) = () > alv - £), Vo€ K,z € V()€ Hv,z),

by the complete continuity of A(:, v) and the proper convex lower semicontinu-
ity of f and a. Therefore according to Theorem 2.1 there exist £ € V(2) and

¢ € H(%,3) such that
(A(E,€), (v, 8)) + f(v) = f(E) 20, VweK
This completes the proof. W

Theorem 3.2. Let X be a real Banach space and let K T X** be a nonempty,
unbounded, closed and convex subset. Let V : K — 2%X 7 and H : K x K —
2X" be finite-dimensional upper semicontinuous mappings with compact values.
Suppose there hold the following:

(1) n(z,y) +n(y,z) = 0 for all z,y € K;

(ii) for each y,v € K and £ € X~ fixed, the mapping x — (A(y, &), n(z,v))
s affine and lower semicontinuous;
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(iii) f : K = RU {400} is a proper, affine and lower semicontinuous
function;

(iv) a: X** — R is convez and lower semicontinuous.

Suppose additionally that H and V' are compositely relaxed n — a semimono-
tone with respect to A. If the multivalued map T : K = 2% defined by

T(z) = U H(x,z) = H(z,V(x))
z€V(z)

is H ~uniformly continuous such that
(v) there exists a point o € K such that

}{Bfﬁliggggg{m)[(ﬂ(ma £),1(z, x0)) + f(z) — f(z0)] >0,

then there exist & € K, 3 € V(%) and £ € H(&, 3) such that
(A(#,€),n(v,8)) + f(v) - f(2) 20, Vve€ K.

Proof. Denote by B, the closed ball with radius r and center at 0 in X **. First
consider the problem of finding z, € K., z, € V(x,) and &, € H(z,, z,) such
that

(10) (A(zr, &)y (v, 20)) + f(0) = flzr) 20, Vv € K,

where K, = {z € K : ||z|]| <r} = KNB,. By Theorem 3.1 problem (10) has a
solution; that is, there exist z, € K, 2, € V(z,) and & € H(z,, z,) such that
inequality (10) holds.

Let r be large enough such that z¢ € B,. Therefore,

(11) (A(zr, &), (20, 2)) + f(z0) — f(2r) 2 0.

From condition (v) it follows that {z,} is bounded. Indeed, if this was false,
we may assume without loss of generality that ||z,|| = oo as r = co. Now we
derive from (11)

inf [(A(zr,€),n(z,, z0)) + f(zr) — f(0)]

(€T (zr)

< (A(zr, &), nlzr, o)) + fzr) — (o)
<0,

which hence implies that
liminf inf [(A(z.,&),n(z., z0)) + f(z.) — f(zo)] <O.

|zr | 200 EE€ET ()

This contradicts condition (v). So, we may assume that z, converges to Z in
g(X**, X*) as r = 0o. On the other hand, it follows from Theorem 2.1 that

(A(zr, &), n(v,2)) + f(v) = f(zr) 2 (v —2,), VWE K, 2 € V(v), £ € H(v,2).
Letting r — oo, we have

(A(Z,8),n(v,2)) + f(v) = (&) 2 alv-2), WWe K, z€V(v), £ € H(v,2).
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Again from Theorem 2.1 we know that there exist 2 € V() and £ € H(z,2)
such that

(A(Z,€), (v, £)) + f(v) - f(#) >0, Vv € K.

This completes the proof. ]

Remark 3.1. Theorems 3.1 and 3.2 improve and generalize Theorems 3.1 and
3.2 of Fang and Huang [6], and Theorems 2.1 to 2.6 of Chen [3].

Remark 3.2. We may raise an open question concerning with proofs of main
theorems in the paper. Can we replace the affinity condition of the function f
in Theorems 2.2, 2.3, 3.1, and 3.2 by the convexity condition?
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