• Title/Summary/Keyword: K1

Search Result 328,368, Processing Time 0.137 seconds

Identification and Molecular Characterization of Novel cry1-Type Toxin Genes from Bacillus thuringiensis K1 Isolated in Korea

  • Li Ming Shun;Choi Jae-Young;Roh Jong-Yul;Shim Hee-Jin;Kang Joong-Nam;Kim Yang-Su;Wang Yong;Yu Zi Niu;Jin Byung-Rae;Je Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • To clone novel cry1-type genes from the Bacillus thuringiensis K1 isolate, about 2.4-kb-long PCR fragments were amplified with two primer sets of ATG1-F/N400-R and 1BeATG1-F/N400-R. Using PCR-RFLP, three novel cry1-type genes, cry1-1, cry1-7, and cry1-44, were obtained from B. thuringiensis K1 and the complete coding sequences of these novel genes were analyzed. The Cry1-1, Cry1-7, and Cry1-44 proteins showed maximum similarities of about 78.0%, 99.7%, and 91.0% with the Cry1Ha1, Cry1Be1, and Cry1Ac2 proteins, respectively. These novel cry1-type genes were expressed using a baculovirus expression vector system and their insecticidal activities were investigated. Whereas all three novel genes were toxic to Plutella xylostella larvae, only Cry1-1 showed insecticidal activity against Spodoptera exigua larvae.

SOME RESULTS ON STARLIKE TREES AND SUNLIKE GRAPHS

  • Mirko, Lepovic
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.109-123
    • /
    • 2003
  • A tree is called starlike if it has exactly one vertex of degree greate. than two. In [4] it was proved that two starlike trees G and H are cospectral if and only if they are isomorphic. We prove here that there exist no two non-isomorphic Laplacian cospectral starlike trees. Further, let G be a simple graph of order n with vertex set V(G) : {1,2, …, n} and let H = {$H_1$, $H_2$, …, $H_{n}$} be a family of rooted graphs. According to [2], the rooted product G(H) is the graph obtained by identifying the root of $H_{i}$ with the i-th vertex of G. In particular, if H is the family of the paths $P_k_1,P_k_2,...P_k_2$ with the rooted vertices of degree one, in this paper the corresponding graph G(H) is called the sunlike graph and is denoted by G($k_1,k_2,...k_n$). For any $(x_1,x_2,...,x_n)\;\in\;{I_*}^n$, where $I_{*}$ = : {0,1}, let G$(x_1,x_2,...,x_n)$ be the subgraph of G which is obtained by deleting the vertices $i_1,i_2,...i_j\;\in\;V(G)\;(O\leq j\leq n)$, provided that $x_i_1=x_i_2=...=x_i_j=o.\;Let \;G[x_1,x_2,...x_n]$ be characteristic polynomial of G$(x_1,x_2,...,x_n)$, understanding that G[0,0,...,0] $\equiv$1. We prove that $G[k_1,k_2,...,k_n]-\sum_{x\in In}[{\prod_{\imath=1}}^n\;P_k_i+x_i-2(\lambda)](-1)...G[x_1,x_2,...,X_n]$ where x=($x_1,x_2,...,x_n$);G[$k_1,k_2,...,k_n$] and $P_n(\lambda)$ denote the characteristic polynomial of G($k_1,k_2,...,k_n$) and $P_n$, respectively. Besides, if G is a graph with $\lambda_1(G)\;\geq1$ we show that $\lambda_1(G)\;\leq\;\lambda_1(G(k_1,k_2,...,k_n))<\lambda_1(G)_{\lambda_1}^{-1}(G}$ for all positive integers $k_1,k_2,...,k_n$, where $\lambda_1$ denotes the largest eigenvalue.

HOW THE PARAMETER ε INFLUENCE THE GROWTH RATES OF THE PARTIAL QUOTIENTS IN GCFε EXPANSIONS

  • Zhong, Ting;Shen, Luming
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.637-647
    • /
    • 2015
  • For generalized continued fraction (GCF) with parameter ${\epsilon}(k)$, we consider the size of the set whose partial quotients increase rapidly, namely the set $$E_{\epsilon}({\alpha}):=\{x{\in}(0,1]:k_{n+1}(x){\geq}k_n(x)^{\alpha}\;for\;all\;n{\geq}1\}$$, where ${\alpha}$ > 1. We in [6] have obtained the Hausdorff dimension of $E_{\epsilon}({\alpha})$ when ${\epsilon}(k)$ is constant or ${\epsilon}(k){\sim}k^{\beta}$ for any ${\beta}{\geq}1$. As its supplement, now we show that: $$dim_H\;E_{\epsilon}({\alpha})=\{\frac{1}{\alpha},\;when\;-k^{\delta}{\leq}{\epsilon}(k){\leq}k\;with\;0{\leq}{\delta}&lt;1;\\\;\frac{1}{{\alpha}+1},\;when\;-k-{\rho}&lt;{\epsilon}(k){\leq}-k\;with\;0&lt;{\rho}&lt;1;\\\;\frac{1}{{\alpha}+2},\;when\;{\epsilon}(k)=-k-1+\frac{1}{k}$$. So the bigger the parameter function ${\epsilon}(k_n)$ is, the larger the size of $E_{\epsilon}({\alpha})$ becomes.

AN ACTION OF A GALOIS GROUP ON A TENSOR PRODUCT

  • Hwang, Yoon-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.645-648
    • /
    • 2005
  • Let K be a Galois extension of a field F with G = Gal(K/F). Let L be an extension of F such that $K\;{\otimes}_F\;L\;=\; N_1\;{\oplus}N_2\;{\oplus}{\cdots}{\oplus}N_k$ with corresponding primitive idempotents $e_1,\;e_2,{\cdots},e_k$, where Ni's are fields. Then G acts on $\{e_1,\;e_2,{\cdots},e_k\}$ transitively and $Gal(N_1/K)\;{\cong}\;\{\sigma\;{\in}\;G\;/\;{\sigma}(e_1)\;=\;e_1\}$. And, let R be a commutative F-algebra, and let P be a prime ideal of R. Let T = $K\;{\otimes}_F\;R$, and suppose there are only finitely many prime ideals $Q_1,\;Q_2,{\cdots},Q_k$ of T with $Q_i\;{\cap}\;R\;=\;P$. Then G acts transitively on $\{Q_1,\;Q_2,{\cdots},Q_k\},\;and\;Gal(qf(T/Q_1)/qf(R/P))\;{\cong}\;\{\sigma{\in}\;G/\;{\sigma}-(Q_1)\;=\;Q_1\}$ where qf($T/Q_1$) is the quotient field of $T/Q_1$.

EVALUATING SOME DETERMINANTS OF MATRICES WITH RECURSIVE ENTRIES

  • Moghaddamfar, Ali Reza;Salehy, Seyyed Navid;Salehy, Seyyed Nima
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.331-346
    • /
    • 2009
  • Let ${\alpha}$ = (${\alpha}_1,\;{\alpha}_2$,...) and ${\beta}$ = (${\beta}_1,\;{\beta}_2$,...) be two sequences with ${\alpha}_1$ = ${\beta}_1$ and k and n be natural numbers. We denote by $A^{(k,{\pm})}_{{\alpha},{\beta}}(n)$ the matrix of order n with coefficients ${\alpha}_{i,j}$ by setting ${\alpha}_{1,i}$ = ${\alpha}_i,\;{\alpha}_{i,1}$ = ${\beta}_i$ for 1 ${\leq}$ i ${\leq}$ n and $${\alpha}_{i,j}=\{{\alpha}_{i-1,j-1}+{\alpha}_{i-1,j}\;if\;j{\equiv}$$2,3,4,..., k + 1 (mod 2k) $$\{{\alpha}_{i-1,j-1}-{\alpha}_{i-1,j}\;if\;j{\equiv}$$ k + 2,..., 2k + 1 (mod 2k) for 2 ${\leq}$ i, j ${\leq}$ n. The aim of this paper is to study the determinants of such matrices related to certain sequence ${\alpha}$ and ${\beta}$ and some natural numbers k.

ISOMORHPHISMS OF (4k-1)-DIAGONAL ALGEBRA $Alg{\iota}(\array{4k-1\infty}\)$

  • Choi, Taeg-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.135-146
    • /
    • 1999
  • In this paper, we introduce the (4k-1)-diagonal algebra $Alg{\iota}(\array{4k-1\\\infty}\)$ and investigate the necessary and sufficient condition that isomorphisms of $Alg{\iota}(\array{4k-1\\\infty}\)$ are quasi-spatial.

  • PDF

Effects of Morin on benzo(k)fluoranthene Regulated CYP1A1 Gene Expression in MCF-7 Human Breast Cancer Cells (Morin이 benzo(k)fluoranthene에 의한 유방암 세포 MCF-7의 CYP1A1 유전자 발현 조절에 미치는 영향)

  • Yang, So-Yeon;Kim, Yeo-Woon;Sheen, Yhun-Yhong
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.4
    • /
    • pp.189-197
    • /
    • 2004
  • We investigated the effect of dietaty flavonoid, such as CYP1A1 promoter activity, 7-ethoxyresorufin-O-deethylase(EROD) activity and CYP1A1 mRNA expression induced by benzo(k)fluoranthene(B(k)F) in MCF-7 cells. Based on the three criteria of frequency of occurrence in the environment, toxicity and potential exposure to humans, B(k)F is one of the top-listed PAHs. We found that B(k)F significantly up-regulates the level of CYP1A1 promoter activity, EROD and CYP1A1 mRNA. When cells were treated with morin alonem, it was not changed that EROD and CYP1A1 mRNA, compared to that of control. However, morin inhibited the B(k)-induced CYP1A1 prompter activity and mRNA level at high concentration. But morin exhibited stimulatory effects B(k)F-induced CYP1A1 promoter activity and mRNA level at low concentration. Overall, results from these studies demonstrate morin might interfere the action of B(k) with AhR system to stimulate CYP1A1 gene expression. CYP1A1 is known to be inducible by xenobiotic compouds such as polyciclic aromatic hydrocarbons(PAHs) and 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD). These chemicals have been identified worldwide and can have a significant impact on the human health and well being of human and wildlife. Given these issues, the detection and quantification of these chemicals in biological, environmental and food samples is important.

  • PDF

Lightweight Porcelain using GHM(Glass Hollow Microsphere) (유리질 중공체 GHM(Glass Hollow Microsphere)을 활용한 자기의 경량화)

  • Kim, Geun-Hee;Choi, Hyo-Sung;Pee, Jae-Hwan;Cho, Woo-Seok;Kim, Kyeong-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.74-79
    • /
    • 2011
  • The pore generation technology using GHM (Glass Hollow Microsphere) was studied in order to reduce the weights of porcelain. In this study, we verify the property of modified slurry by adding GHM. The modified slurry was prepared by adding 1.0~2.5 wt%(K1), 1.0~6.0 wt%(K37) of GHM to the slurry for porcelain. The slurry viscosity were stable inside a content range of 1.0~2.5 wt%(K1), 1.0~6.0 wt%(K37). However, the viscosity of modified slurry increased more than 3.0 wt%(K1) and 6.5 wt%(K37). The formed specimen by slip casting was fired at $1229^{\circ}C$, $1254^{\circ}C$. As the amount of GHM content increased, the weight decreased and the addition of 1.0~2.5 wt%(K1), 1.0~6.0 wt%(K37) of GHM resulted in a weight drop of 30%(K1) and 25(K37). However, when the GHM content increased, the strength decreases over 70%. This is caused by the presence of a large volume of surface defects (pores) and defects from the agglomeration of GHM.

THE GENERALIZATION OF CLEMENT'S THEOREM ON PAIRS OF PRIMES

  • Lee, Heon-Soo;Park, Yeon-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.89-96
    • /
    • 2009
  • In this article, we show a generalization of Clement's theorem on the pair of primes. For any integers n and k, integers n and n + 2k are a pair of primes if and only if 2k(2k)![(n - 1)! + 1] + ((2k)! - 1)n ${\equiv}$ 0 (mod n(n + 2k)) whenever (n, (2k)!) = (n + 2k, (2k)!) = 1. Especially, n or n + 2k is a composite number, a pair (n, n + 2k), for which 2k(2k)![(n - 1)! + 1] + ((2k)! - 1)n ${\equiv}$ 0 (mod n(n + 2k)) is called a pair of pseudoprimes for any positive integer k. We have pairs of pseudorimes (n, n + 2k) with $n{\leq}5{\times}10^4$ for each positive integer $k(4{\leq}k{\leq}10)$.

  • PDF