
Bull. Korean Math. Soc. 46 (2009), No. 2, pp. 331–346
DOI 10.4134/BKMS.2009.46.2.331

EVALUATING SOME DETERMINANTS OF
MATRICES WITH RECURSIVE ENTRIES

Ali Reza Moghaddamfar, Seyyed Navid Salehy, and Seyyed Nima Salehy

Abstract. Let α = (α1, α2, . . .) and β = (β1, β2, . . .) be two sequences

with α1 = β1 and k and n be natural numbers. We denote by A
(k,±)
α,β (n)

the matrix of order n with coefficients ai,j by setting a1,i = αi, ai,1 = βi

for 1 ≤ i ≤ n and

ai,j =


ai−1,j−1 + ai−1,j if j ≡ 2, 3, 4, . . . , k + 1 (mod 2k)
ai−1,j−1 − ai−1,j if j ≡ k + 2, . . . , 2k + 1 (mod 2k)

for 2 ≤ i, j ≤ n. The aim of this paper is to study the determinants
of such matrices related to certain sequences α and β, and some natural
numbers k.

1. Introduction

In [1], R. Bacher considered the determinants of matrices associated to the
Pascal triangle. Furthermore, he introduced the generalized Pascal triangles as
follows. Let α = (α1, α2, . . .) and β = (β1, β2, . . .) be two sequences starting
with a common first term α1 = β1. Define a matrix Pα,β(n) of order n with
coefficients pi,j by setting pi,1 = βi, p1,i = αi for 1 ≤ i ≤ n and pi,j = pi−1,j +
pi,j−1 for 2 ≤ i, j ≤ n. The infinite matrix Pα,β(∞) is called the generalized
Pascal triangle associated to the sequences α and β. In addition he investigated
some other similar constructions and made many interesting observations and
posed some conjectures. Some of his conjectures were thoroughly investigated
in [3] with positive answers.

In constructing the generalized Pascal triangles or the other similar con-
structions in which the coefficients, except for the first row and column, are
determined by a recursive relation, only one recursive relation is used. Here we
are willing to construct some similar arrangements associated to two arbitrary
sequences α and β being in the first row and column, respectively, and the
remaining coefficients are determined by two different recursive relations. Let
us define this more precisely as follows.
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Definition. Let α = (α1, α2, . . .) and β = (β1, β2, . . .) be two sequences start-
ing with a common first term α1 = β1 and k be a natural number. Define a
matrix A

(k,±)
α,β (n) of order n with coefficients ai,j by setting ai,1 = βi, a1,i = αi

for 1 ≤ i ≤ n and

ai,j =
{

ai−1,j−1 + ai−1,j if j ≡ 2, 3, 4, . . . , k + 1 (mod 2k)
ai−1,j−1 − ai−1,j if j ≡ k + 2, . . . , 2k + 1 (mod 2k)

for 2 ≤ i, j ≤ n. When k = 1, we put A±α,β(n) = A
(1,±)
α,β (n).

In general, we are interested in the sequence of the determinants

(det A
(k,±)
α,β (1), detA

(k,±)
α,β (2), . . . , detA

(k,±)
α,β (n), . . .),

where α and β are certain sequences having a common first entry.
On the other hand, when we consider the constant sequence α = (1, 1, 1, . . .),

we notice that the generalized Pascal triangle Pα,α(∞) is, in fact, the classical
Pascal triangle. Hence, in the early studies, we restrict our investigation to this
sequence α = (1, 1, 1, . . .) only, and we consider the principal minors of infinite
matrices A

(k,±)
α,α (∞).

In this research, it has been tried to prove three theorems.

Theorem 1.1. The matrices A±α,α(n) associated to the sequence α = (1, 1, . . .)
have the determinant 3[ n−1

2 ] for every natural number n. In other words, we
have

detA±α,α(n) =
{

3l−1 if n = 2l, (l = 1, 2, . . .)
3l if n = 2l + 1. (l = 0, 1, 2, . . .)

Theorem 1.2. The sequence (det A
(2,±)
α,α (n)) of determinants associated to the

sequence α = (1, 1, 1, . . .) satisfies the following

det A(2,±)
α,α (n) =

{
(−5)2l−1 if n = 4l, (l = 1, 2, . . .)
(−5)2l if n = 4l + r. (r = 1, 2, 3; l = 0, 1, 2, . . .)

Theorem 1.3. The sequence (det A
(3,±)
α,α (n)) of determinants associated to the

sequence α = (1, 1, 1, . . .) satisfies the following

det A(3,±)
α,α (n) =





113l−1 if n = 6l, (l = 1, 2, . . .)
113l if n = 6l + r, (r = 1, 2, 3, 4; l = 0, 1, 2, . . .)
113l+1 if n = 6l + 5. (l = 0, 1, 2, . . .)

Here, we have the following conjecture:

Conjecture. Let k and n be natural numbers and n− 1 = rk + s for some r, s
with r ≥ 0 and 0 ≤ s < k. Let α = (1, 1, 1, . . .). Then we have

detA(k,±)
α,α (n) =





ωrk/2 if r is even,

ωk(r−1)/2+s if r is odd,

where ω = [1− (−2)k+2]/3.
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2. Main results

As we mentioned before, we should concentrate on the sequence of determi-
nants

(detA(k,±)
α,α (1), detA(k,±)

α,α (2), . . . , detA(k,±)
α,α (n), . . .)

for certain k. Therefore, in order to start, we consider the case k = 1, and
prove the following theorem.

Theorem 1. The matrices A±α,α(n) associated to the sequence α = (1, 1, 1, . . .)
have the determinant 3[ n−1

2 ] for every natural number n.

Proof. We apply LU-factorization method (see [2]). We claim that

A±α,α(n) = L · U,

where L = A±β,α(n) with β = (1, 0, 0, 0, . . .), and where

U =




U1

U2

...
Un


 ,

with

Ui =





(1, 1, 1, . . . , 1︸ ︷︷ ︸
n times

) if i = 1,

(0, 0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1,−1, 1,−1, . . . , ui,n−1, ui,n︸ ︷︷ ︸
n−i+1 times (2−periodic)

) if i
2≡ 0,

(0, 0, . . . , 0︸ ︷︷ ︸
i−1 times

, 3,−1, 3,−1, 3, . . . , ui,n−1, ui,n︸ ︷︷ ︸
n−i+1 times (2−periodic)

) if i > 1 and i
2≡ 1,

and (ui,n−1, ui,n) is satisfied in Table 1.

Table 1.

i\n n
2≡ 0 n

2≡ 1

i
2≡ 0 (−1, 1) (1,−1)

i
2≡ 1 (3,−1) (−1, 3)

The matrix L is a lower triangular matrix with 1’s on the diagonal, whereas
U is an upper triangular matrix with diagonal entries
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1 if n = 1,
1, 1 if n = 2,

1, 1, 3, 1, 3, 1, 3, . . . , 1, 3︸ ︷︷ ︸
n−1 times (2−periodic)

if n > 1 and n
2≡ 1,

1, 1, 3, 1, 3, 1, 3, . . . , 3, 1︸ ︷︷ ︸
n−1 times (2−periodic)

if n > 2 and n
2≡ 0.

Since det L = 1 and detU = 3[ n−1
2 ], it is obvious that the claimed factorization

of A±α,α(n) immediately implies the validity of the theorem.
Suppose that

L = (li,j)1≤i,j≤n and U = (ui,j)1≤i,j≤n.

Then by definition, we have l1,1 = 1, l1,j = 0, li,1 = 1 for 2 ≤ i, j ≤ n and

(1) li,j =

{
li−1,j−1 + li−1,j if j

2≡ 0

li−1,j−1 − li−1,j if j
2≡ 1

for 2 ≤ i, j ≤ n. Also we have

(2) (u1,j , u2,j , . . . , un,j)T =





(1, 0, 0, . . . , 0)T j = 1,

(1, 1,−1, 1,−1, . . . ,−1, 1︸ ︷︷ ︸
j−1 times (2−periodic)

, 0, . . . , 0︸ ︷︷ ︸
n−j

)T j
2≡ 0,

(1,−1, 3,−1, 3, . . . ,−1, 3︸ ︷︷ ︸
j−1 times (2−periodic)

, 0, . . . , 0︸ ︷︷ ︸
n−j

)T j
2≡ 1.

For the proof of the claimed factorization we compute the (i, j)-entry of L·U ,
that is

(L · U)i,j =
n∑

k=1

li,kuk,j .

It is easy to see that it is enough to show that (L ·U)1,j = 1, (L ·U)i,1 = 1 for
1 ≤ i, j ≤ n and

(L · U)i,j =

{
(L · U)i−1,j−1 + (L · U)i−1,j j

2≡ 0

(L · U)i−1,j−1 − (L · U)i−1,j j
2≡ 1

for 2 ≤ i, j ≤ n, in order to prove the theorem.
Let us do the required calculations. First, suppose that i = 1. Then

(3) (L · U)1,j =
n∑

k=1

l1,kuk,j = l1,1u1,j = 1.

Next, suppose that j = 1. In this case we obtain

(4) (L · U)i,1 =
n∑

k=1

li,kuk,1 = li,1u1,1 = 1.



EVALUATING SOME DETERMINANTS 335

Finally, we assume that 2 ≤ i, j ≤ n. We split the proof into two cases,
according to the following possibilities for j.

Case 1. j
2≡ 0. In this case we claim that

(5) (L · U)i,j = (L · U)i−1,j−1 + (L · U)i−1,j .

Since j − 1
2≡ 1, by (2) we get

(L · U)i−1,j−1 =
n∑

k=1

li−1,kuk,j−1 = 1−
j−2
2∑

k=1

li−1,2k + 3

j−2
2∑

k=1

li−1,2k+1,

and since j
2≡ 0 we obtain

(L · U)i−1,j =
n∑

k=1

li−1,kuk,j = 1 +

j
2∑

k=1

li−1,2k −
j−2
2∑

k=1

li−1,2k+1,

and ultimately

(6) (L · U)i−1,j−1 + (L · U)i−1,j = 2 + 2

j−2
2∑

k=1

li−1,2k+1 + li−1,j .

Again, since j
2≡ 0 we obtain

(L · U)i,j =
n∑

k=1

li,kuk,j = li,1 +

j
2∑

k=1

li,2k −
j−2
2∑

k=1

li,2k+1,

and by (1) we get

(L · U)i,j = li,1 +

j
2∑

k=1

(li−1,2k−1 + li−1,2k)−
j−2
2∑

k=1

(li−1,2k − li−1,2k+1),

and after some further simplification we obtain

(7) (L · U)i,j = 2 + 2

j−2
2∑

k=1

li−1,2k+1 + li−1,j .

Now, from (6) and (7) we obtain (5).

Case 2. j
2≡ 1. In this case we claim that

(8) (L · U)i,j = (L · U)i−1,j−1 − (L · U)i−1,j .

Here, since j − 1
2≡ 0, by (2) we obtain

(L · U)i−1,j−1 =
n∑

k=1

li−1,kuk,j−1 = 1 +

j−1
2∑

k=1

li−1,2k −
j−3
2∑

k=1

li−1,2k+1
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and similarly we deduce that

(L · U)i−1,j =
n∑

k=1

li−1,kuk,j = 1−
j−1
2∑

k=1

li−1,2k + 3

j−1
2∑

k=1

li−1,2k+1,

because j
2≡ 1. Therefore by an easy calculation we conclude that

(9) (L · U)i−1,j−1 − (L · U)i−1,j = 2

j−1
2∑

k=1

li−1,2k − 4

j−3
2∑

k=1

li−1,2k+1 − 3li−1,j .

Again, since j
2≡ 1 we have

(L · U)i,j =
n∑

k=1

li,kuk,j = li,1 −
j−1
2∑

k=1

li,2k + 3

j−1
2∑

k=1

li,2k+1.

Now, by (1) we obtain

(L · U)i,j = 1−
j−1
2∑

k=1

(li−1,2k−1 + li−1,2k) + 3

j−1
2∑

k=1

(li−1,2k − li−1,2k+1),

and simply we can observe that

(10) (L · U)i,j = 2

j−1
2∑

k=1

li−1,2k − 4

j−3
2∑

k=1

li−1,2k+1 − 3li−1,j .

Now, from (9) and (10) we obtain (8).
Therefore, from (3), (4), (5) and (8) we conclude the theorem. ¤

Next, we focus on the sequence (det A
(2,±)
α,α (n)) for n ∈ N.

Theorem 2. The sequence (detA
(2,±)
α,α (n))of determinants associated to the

sequence α = (1, 1, 1, . . .) satisfies the following

det A(2,±)
α,α (n) =

{
(−5)2l−1 if n = 4l, (l = 1, 2, . . .)
(−5)2l if n = 4l + r. (r = 1, 2, 3, l = 0, 1, 2, . . .)

Proof. Again, we use the LU-factorization method. Here, we claim that

A(2,±)
α,α (n) = L · U,

where L = A
(2,±)
β,α (n) with β = (1, 0, 0, . . .) and where

U =




U1

U2

...
Un


 ,
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with

Ui =





(1, 1, 1, . . . , 1︸ ︷︷ ︸
n times

) i = 1,

(0, 0, . . . , 0︸ ︷︷ ︸
i−1 times

,−5, 1, 1,−1,−5, 1, 1,−1, . . . , ui,n−1, ui,n︸ ︷︷ ︸
n−i+1 times (4−periodic)

) i
4≡ 0,

(0, 0, . . . , 0︸ ︷︷ ︸
i−1 times

,−5, 3,−1,−1,−5, 3,−1,−1, . . . , ui,n−1, ui,n︸ ︷︷ ︸
n−i+1 times (4−periodic)

) i
4≡ 1,

(0, 0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1, 1,−1,−1, 1, 1,−1,−1, . . . , ui,n−1, ui,n︸ ︷︷ ︸
n−i+1 times (4−periodic)

) i
4≡ 2,

(0, 0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1, 3, 1,−1, 1, 3, 1,−1, . . . , ui,n−1, ui,n︸ ︷︷ ︸
n−i+1 times (4−periodic)

) i
4≡ 3,

and (ui,n−1, ui,n) is satisfied in Table 2.

Table 2.

i\n n
4≡ 0 n

4≡ 1 n
4≡ 2 n

4≡ 3

i
4≡ 0 (−1,−5) (−5, 1) (1, 1) (1,−1)

i
4≡ 1 (−1,−1) (−1,−5) (−5, 3) (3,−1)

i
4≡ 2 (1,−1) (−1,−1) (−1, 1) (1, 1)

i
4≡ 3 (1, 3) (3, 1) (1,−1) (−1, 1)

The matrix L is a lower triangular matrix with 1’s on the diagonal, whereas
U is an upper triangular matrix with diagonal entries

1, 1, 1,−5,−5, 1, 1, . . . , un−1,n−1, un,n︸ ︷︷ ︸
4−periodic

,

where

(un−1,n−1, un,n) =





(1,−5) if n
4≡ 0,

(−5,−5) if n
4≡ 1,

(−5, 1) if n
4≡ 2,

(1, 1) if n
4≡ 3.

Since det L = 1 and

detU =
{

(−5)2l−1 if n = 4l, (l = 1, 2, . . .)
(−5)2l if n = 4l + r. (r = 1, 2, 3, l = 0, 1, 2, . . .)

Again, it is immediately obvious that the claimed factorization of A
(2,±)
α,α (n)

implies the validity of the theorem.
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Suppose that

L = (li,j)1≤i,j≤n and U = (ui,j)1≤i,j≤n.

Then by definition, we have l1,1 = 1, l1,j = 0, li,1 = 1 for 2 ≤ i, j ≤ n and

(11) li,j =

{
li−1,j−1 + li−1,j if j

4≡ 2, 3

li−1,j−1 − li−1,j if j
4≡ 0, 1

for 2 ≤ i, j ≤ n. Moreover, the jth column of U can be considered as follows:
(12)

(u1,j , . . . , un,j)T =





(1, 0, 0, . . . , 0)T j = 1,

(1,−1, 3,−5,−1,−1, 3,−5,−1, . . . , 3,−5︸ ︷︷ ︸
j−1 times (4−periodic)

, 0, . . . , 0︸ ︷︷ ︸
n−j

)T j
4≡ 0,

(1,−1, 1, 1,−5,−1, 1, 1,−5, . . . , 1,−5︸ ︷︷ ︸
j−1 times (4−periodic)

, 0, . . . , 0︸ ︷︷ ︸
n−j

)T j
4≡ 1,

(1, 1,−1, 1, 3, 1,−1, 1, 3, . . . , 3, 1︸ ︷︷ ︸
j−1 times (4−periodic)

, 0, . . . , 0︸ ︷︷ ︸
n−j

)T j
4≡ 2,

(1, 1, 1,−1,−1, 1, 1,−1,−1, . . . , 1, 1︸ ︷︷ ︸
j−1 times (4−periodic)

, 0, . . . , 0︸ ︷︷ ︸
n−j

)T j
4≡ 3.

For the proof of the claimed factorization we need again some calculations.
In fact, the (i, j)-entry of L · U is

(L · U)i,j =
n∑

k=1

li,kuk,j .

It is easy to see that it is enough to show that (L ·U)1,j = 1, (L ·U)i,1 = 1 for
1 ≤ i, j ≤ n and

(L · U)i,j =

{
(L · U)i−1,j−1 + (L · U)i−1,j j

4≡ 2, 3

(L · U)i−1,j−1 − (L · U)i−1,j j
4≡ 0, 1

for 2 ≤ i, j ≤ n, in order to prove the theorem.
Again, we verify the claim by a direct calculation. First, suppose that i = 1.

Then

(13) (L · U)1,j =
n∑

k=1

l1,kuk,j = l1,1u1,j = 1.

Next, suppose that j = 1. In this case we obtain

(14) (L · U)i,1 =
n∑

k=1

li,kuk,1 = li,1u1,1 = 1.

Finally, we assume that 2 ≤ i, j ≤ n. We split the proof into four cases,
according to the following possibilities for j.
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Case 1. j
4≡ 0. In this case we claim that

(15) (L · U)i,j = (L · U)i−1,j−1 − (L · U)i−1,j .

Since j − 1
4≡ 3, we obtain

(L ·U)i−1,j−1 = li−1,1−
j−4
4∑

k=1

li−1,4k−
j−4
4∑

k=1

li−1,4k+1 +

j−4
4∑

k=0

li−1,4k+2 +

j−4
4∑

k=0

li−1,4k+3,

and since j
4≡ 0, it follows that

(L ·U)i−1,j = li−1,1−5

j
4∑

k=1

li−1,4k−
j−4
4∑

k=1

li−1,4k+1−
j−4
4∑

k=0

li−1,4k+2+3

j−4
4∑

k=0

li−1,4k+3.

Consequently, we obtain
(16)

(L · U)i−1,j−1 − (L · U)i−1,j = 4

j−4
4∑

k=1

li−1,4k + 2

j−4
4∑

k=0

li−1,4k+2 − 2

j−4
4∑

k=0

li−1,4k+3 − 5li−1,j .

On the other hand since j
4≡ 0, we get

(L · U)i,j = li,1 − 5

j
4∑

k=1

li,4k −
j−4
4∑

k=1

li,4k+1 −
j−4
4∑

k=0

li,4k+2 + 3

j−4
4∑

k=0

li,4k+3.

Now by (11) we deduce that

(L · U)i,j = 1− 5

j
4∑

k=1

(li−1,4k−1 − li−1,4k)−
j−4
4∑

k=1

(li−1,4k − li−1,4k+1)

−
j−4
4∑

k=0

(li−1,4k+1 + li−1,4k+2) + 3

j−4
4∑

k=0

(li−1,4k+2 + li−1,4k+3),

and after some further simplifications the expression reduces to

(17) (L · U)i,j = 4

j−4
4∑

k=1

li−1,4k + 2

j−4
4∑

k=0

li−1,4k+2 − 2

j−4
4∑

k=0

li−1,4k+3 − 5li−1,j .

Now, from (16) and (17) we obtain (15).

Case 2. j
4≡ 1. Here, we claim that

(18) (L · U)i,j = (L · U)i−1,j−1 − (L · U)i−1,j .

Since j − 1
4≡ 0, we obtain

(L · U)i−1,j−1 = li−1,1 − 5

j−1
4∑

k=1

li−1,4k −
j−5
4∑

k=1

li−1,4k+1 −
j−5
4∑

k=0

li−1,4k+2 + 3

j−5
4∑

k=0

li−1,4k+3 .
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Similarly, since j
4≡ 1 it follows that

(L ·U)i−1,j = li−1,1 +

j−1
4∑

k=1

li−1,4k− 5

j−1
4∑

k=1

li−1,4k+1−
j−5
4∑

k=0

li−1,4k+2−
j−5
4∑

k=0

li−1,4k+3.

Therefore, we have
(19)

(L · U)i−1,j−1 − (L · U)i−1,j = −6

j−4
4∑

k=1

li−1,4k + 4

j−5
4∑

k=1

li−1,4k+1 + 4

j−5
4∑

k=0

li−1,4k+3 − 5li−1,j .

Furthermore, since j
4≡ 1 we obtain

(L · U)i,j = li,1 +

j−1
4∑

k=1

li,4k − 5

j−1
4∑

k=1

li,4k+1 −
j−5
4∑

k=0

li,4k+2 +

j−5
4∑

k=0

li,4k+3.

Now we apply (11), to get

(L · U)i,j = 1 +

j−1
4∑

k=1

(li−1,4k−1 − li−1,4k)− 5

j−4
4∑

k=1

(li−1,4k − li−1,4k+1)

−
j−5
4∑

k=0

(li−1,4k+1 + li−1,4k+2) +

j−5
4∑

k=0

(li−1,4k+2 + li−1,4k+3).

After some simplifications this leads to

(20) (L · U)i,j = −6

j−4
4∑

k=1

li−1,4k + 4

j−5
4∑

k=1

li−1,4k+1 + 4

j−5
4∑

k=0

li−1,4k+3 − 5li−1,j .

Through comparing (19) and (20), we can get (18).

Case 3. j
4≡ 2. In this case we claim that

(21) (L · U)i,j = (L · U)i−1,j−1 + (L · U)i−1,j .

Here since j − 1
4≡ 1, by (12) we obtain

(L · U)i−1,j−1 = 1 +

j−2
4∑

k=1

li−1,4k − 5

j−2
4∑

k=1

li−1,4k+1 −
j−6
4∑

k=0

li−1,4k+2 +

j−6
4∑

k=0

li−1,4k+3,

and since j
4≡ 2 it follows that

(L · U)i−1,j = 1 +

j−2
4∑

k=1

li−1,4k + 3

j−2
4∑

k=1

li−1,4k+1 +

j−2
4∑

k=0

li−1,4k+2 −
j−6
4∑

k=0

li−1,4k+3.
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Therefore we have

(22) (L · U)i−1,j−1 + (L · U)i−1,j = 2 + 2

j−2
4∑

k=1

li−1,4k − 2

j−2
4∑

k=1

li−1,4k+1 + li−1,j .

On the other hand, since j
4≡ 2 we deduce that

(L · U)i,j = 1 +

j−2
4∑

k=1

li,4k + 3

j−2
4∑

k=1

li,4k+1 +

j−2
4∑

k=0

li,4k+2 −
j−6
4∑

k=0

li,4k+3,

and by (11) we conclude that

(L · U)i,j = 1 +

j−2
4∑

k=1

(li−1,4k−1 − li−1,4k) + 3

j−2
4∑

k=1

(li−1,4k − li−1,4k+1)

+

j−2
4∑

k=0

(li−1,4k+1 + li−1,4k+2)−
j−6
4∑

k=0

(li−1,4k+2 + li−1,4k+3).

Now, an easy calculation shows that

(23) (L · U)i,j = 2 + 2

j−2
4∑

k=1

li−1,4k − 2

j−2
4∑

k=1

li−1,4k+1 + li−1,j .

By comparing (22) and (23), we may obtain (21).

Case 4. j
4≡ 3. In this case, we claim that

(24) (L · U)i,j = (L · U)i−1,j−1 + (L · U)i−1,j .

Since j − 1
4≡ 2, we obtain

(L · U)i−1,j−1 = 1 +

j−3
4∑

k=1

li−1,4k + 3

j−3
4∑

k=1

li−1,4k+1 +

j−3
4∑

k=0

li−1,4k+2 −
j−7
4∑

k=0

li−1,4k+3.

Similarly, since j
4≡ 3 it follows that

(L · U)i−1,j = 1−
j−3
4∑

k=1

li−1,4k −
j−3
4∑

k=1

li−1,4k+1 −
j−3
4∑

k=0

li−1,4k+2 +

j−3
4∑

k=0

li−1,4k+3.

Therefore, we have

(25) (L ·U)i−1,j−1 +(L ·U)i−1,j = 2+2

j−3
4∑

k=1

li−1,4k+1 +2

j−3
4∑

k=0

li−1,4k+2 + li−1,j .
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On the other hand, since j
4≡ 2 we obtain

(L · U)i,j = 1−
j−3
4∑

k=1

li,4k −
j−3
4∑

k=1

li,4k+1 +

j−3
4∑

k=0

li,4k+2 −
j−3
4∑

k=0

li,4k+3.

Again by (11) we conclude that

(L · U)i,j = 1−
j−3
4∑

k=1

(li−1,4k−1 − li−1,4k)−
j−3
4∑

k=1

(li−1,4k − li−1,4k+1)

+

j−3
4∑

k=0

(li−1,4k+1 + li−1,4k+2) +

j−3
4∑

k=0

(li−1,4k+2 + li−1,4k+3),

and we easily deduce that

(26) (L · U)i,j = 2 + 2

j−3
4∑

k=1

li−1,4k+1 + 2

j−3
4∑

k=0

li−1,4k+2 + li−1,j .

By comparing (25) and (26), we can get (24).
Therefore, from (13), (14), (15), (18), (21) and (24) we conclude the theorem.

¤

In the end, we consider the sequence (det A
(3,±)
α,α (n)) for n ∈ N.

Theorem 3. The sequence (det A
(3,±)
α,α (n)) of determinants associated to the

sequence α = (1, 1, 1, . . .) satisfies the following

det A(3,±)
α,α (n) =





113l−1 if n = 6l, (l = 1, 2, . . .)
113l if n = 6l + r, (r = 1, 2, 3, 4, l = 0, 1, 2, . . .)
113l+1 if n = 6l + 5. (l = 0, 1, 2, . . .)

Proof. The proof is similar to the proof of Theorem 1.1 and Theorem 1.2, and
we avoid presenting some of the details. Again, we apply LU-factorization.
Here, we claim that

A(3,±)
α,α (n) = L · U,

where L = A
(3,±)
β,α (n) with β = (1, 0, 0, . . .) is a lower triangular matrix with 1’s

on the diagonal, and where

U =




U1

U2

...
Un


 ,
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with

Ui =





(1, 1, 1, . . . , 1︸ ︷︷ ︸
n times

) i = 1,

(0, 0, . . . , 0︸ ︷︷ ︸
i−1 times

, 11,−7, 1, 1,−1,−1, . . . , ui,n−1, ui,n︸ ︷︷ ︸
n−i+1 times (6−periodic)

) i
6≡ 0,

(0, 0, . . . , 0︸ ︷︷ ︸
i−1 times

, 11,−5, 3,−1,−1,−1, . . . , ui,n−1, ui,n︸ ︷︷ ︸
n−i+1 times (6−periodic)

) i
6≡ 1,

(0, 0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1, 1, 1,−1,−1,−1, . . . , ui,n−1, ui,n︸ ︷︷ ︸
n−i+1 times (6−periodic)

) i
6≡ 2,

(0, 0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1, 1, 3, 1, 1,−1, . . . , ui,n−1, ui,n︸ ︷︷ ︸
n−i+1 times (6−periodic)

) i
6≡ 3,

(0, 0, . . . , 0︸ ︷︷ ︸
i−1 times

, 1,−5, 1,−1, 1,−1, . . . , ui,n−1, ui,n︸ ︷︷ ︸
n−i+1 times (6−periodic)

) i
6≡ 4,

(0, 0, . . . , 0︸ ︷︷ ︸
i−1 times

, 11,−7, 3,−1, 1,−1, . . . , ui,n−1, ui,n︸ ︷︷ ︸
n−i+1 times (6−periodic)

) i
6≡ 5,

and (ui,n−1, ui,n) is satisfied in Table 3.

Table 3.

i\n n
6≡ 0 n

6≡ 1 n
6≡ 2 n

6≡ 3 n
6≡ 4 n

6≡ 5

i
6≡ 0 (−1, 11) (11,−7) (−7, 1) (1, 1) (1,−1) (−1,−1)

i
6≡ 1 (−1,−1) (−1, 11) (11,−5) (−5, 3) (3,−1) (−1,−1)

i
6≡ 2 (−1,−1) (−1,−1) (−1, 1) (1, 1) (1, 1) (1,−1)

i
6≡ 3 (3, 1) (1, 1) (1,−1) (−1, 1) (1, 1) (1, 3)

i
6≡ 4 (−5, 1) (1,−1) (−1, 1) (1,−1) (−1, 1) (1, 5)

i
6≡ 5 (11,−7) (−7, 3) (3,−1) (−1, 1) (1,−1) (−1, 11)

The matrix U is an upper triangular one with diagonal entries

1, 1, 1, 1, 11, 11, 11, . . . , un−1,n−1, un,n︸ ︷︷ ︸
6−periodic

,

where

(un−1,n−1, un,n) =





(11, 11) if n
6≡ 0 or 1,

(11, 1) if n
6≡ 2,

(1, 1) if n
6≡ 3 or 4,

(1, 11) if n
6≡ 5.
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Since det L = 1 and

det U =





113l−1 if n = 6l, (l = 1, 2, . . .)
113l if n = 6l + r, (r = 1, 2, 3, 4, l = 0, 1, 2, . . .)
113l+1 if n = 6l + 5, (l = 0, 1, 2, . . .)

it is obvious that the claimed factorization of A
(3,±)
α,α (n) implies the validity of

the theorem.
Let us do the required calculation. Again, we assume that

L = (li,j)1≤i,j≤n and U = (ui,j)1≤i,j≤n.

Then by definition, we have l1,1 = 1, l1,j = 0, li,1 = 1 for 2 ≤ i, j ≤ n and the
entries li,j for 2 ≤ i, j ≤ n satisfy

(27) li,j =

{
li−1,j−1 + li−1,j if j

4≡ 2, 3, 4

li−1,j−1 − li−1,j if j
4≡ 5, 0, 1.

Moreover, the jth column of U can be considered as follows.
(28)

(u1,j , . . . , un,j)T =





(1, 0, 0, . . . , 0)T j = 1,

(1,−1, 1, 1,−7, 11,−1, . . . ,−7, 11︸ ︷︷ ︸
j−1 times (6−periodic)

, 0, . . . , 0︸ ︷︷ ︸
n−j

)T j
6≡ 0,

(1,−1, 1,−1, 3,−7, 11, . . . ,−7, 11︸ ︷︷ ︸
j−1 times (6−periodic)

, 0, . . . , 0︸ ︷︷ ︸
n−j

)T j
6≡ 1,

(1, 1,−1, 1,−1, 1,−5, . . . ,−5, 1︸ ︷︷ ︸
j−1 times (6−periodic)

, 0, . . . , 0︸ ︷︷ ︸
n−j

)T j
6≡ 2,

(1, 1, 1,−1, 1, 1, 3, . . . , 3, 1, 1︸ ︷︷ ︸
j−1 times (6−periodic)

, 0, . . . , 0︸ ︷︷ ︸
n−j

)T j
6≡ 3,

(1, 1, 1, 1,−1,−1,−1, . . . , 1, 1, 1︸ ︷︷ ︸
j−1 times (6−periodic)

, 0, . . . , 0︸ ︷︷ ︸
n−j

)T j
6≡ 4,

(1,−1, 3,−5, 11,−1,−1, . . . ,−5, 11︸ ︷︷ ︸
j−1 times (6−periodic)

, 0, . . . , 0︸ ︷︷ ︸
n−j

)T j
6≡ 5.

In order to prove the claim we show that the (i, j)-entry of L · U , that is

(L · U)i,j =
n∑

k=1

li,kuk,j ,

satisfy (L · U)1,j = 1, (L · U)i,1 = 1 for 1 ≤ i, j ≤ n and

(29) (L · U)i,j =

{
(L · U)i−1,j−1 + (L · U)i−1,j j

6≡ 2, 3, 4

(L · U)i−1,j−1 − (L · U)i−1,j j
6≡ 5, 0, 1

for 2 ≤ i, j ≤ n.



EVALUATING SOME DETERMINANTS 345

First assume that i = 1. Then, in accordance with the definition of l1,j , we
obtain

(L · U)1,j =
n∑

k=1

l1,kuk,j = l1,1u1,j = 1.

Next, suppose that j = 1. In this case by (28) we obtain

(L · U)i,1 =
n∑

k=1

li,kuk,1 = li,1u1,1 = 1.

Finally, we assume that 2 ≤ i, j ≤ n. In this case we must show that
the entries (L · U)i,j satisfy (29). Here, there are six cases to distinguish,

according to j
6≡ 0, 1, 2, 3, 4 or 5. Using similar arguments to those in the proof

of Theorem 1.2, we see that the result is true in any cases. For instance, we
assume that j

6≡ 4. In this case, we must establish that

(30) (L · U)i,j = (L · U)i−1,j−1 + (L · U)i−1,j .

Since j
6≡ 4, in according with (28) , the right hand of (30) is equal to

(31) 2 + 2

j−4
6∑

k=1

li−1,6k+1 + 2

j−4
6∑

k=0

li−1,6k+2 + 2

j−4
6∑

k=0

li−1,6k+3 + li−1,j .

Again, since j
4≡ 2 by (24), we see that the left-hand of (30) is equal to

(32) 1−
j−4
6∑

k=1

li,6k−
j−4
6∑

k=1

li,6k+1+

j−4
6∑

k=0

li,6k+2+

j−4
6∑

k=0

li,6k+3+

j−4
6∑

k=0

li,6k+4−
j−10

6∑

k=0

li,6k+5.

Now, if we substitute the corresponding value for li,6k+r (0 ≤ r ≤ 5) from (29),
we can conclude

(L · U)i,j = 2 + 2

j−4
6∑

k=1

li−1,6k+1 + 2

j−4
6∑

k=0

li−1,6k+2 + 2

j−4
6∑

k=0

li−1,6k+3 + li−1,j

which results in (30). In this way the proof is completed. ¤
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