# EVALUATING SOME DETERMINANTS OF MATRICES WITH RECURSIVE ENTRIES 

Ali Reza Moghaddamfar, Seyyed Navid Salehy, and Seyyed Nima Salehy

$$
\begin{aligned}
& \text { AbStract. Let } \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \text { and } \beta=\left(\beta_{1}, \beta_{2}, \ldots\right) \text { be two sequences } \\
& \text { with } \alpha_{1}=\beta_{1} \text { and } k \text { and } n \text { be natural numbers. We denote by } A_{\alpha, \beta}^{(k, \pm)}(n) \\
& \text { the matrix of order } n \text { with coefficients } a_{i, j} \text { by setting } a_{1, i}=\alpha_{i}, a_{i, 1}=\beta_{i} \\
& \text { for } 1 \leq i \leq n \text { and } \\
& \qquad a_{i, j}=\left\{\begin{array}{lll}
a_{i-1, j-1}+a_{i-1, j} & \text { if } & j \equiv 2,3,4, \ldots, k+1 \\
a_{i-1, j-1}-a_{i-1, j} & \text { if } & (\bmod 2 k) \\
a_{i-1} \equiv k+2, \ldots, 2 k+1 & (\bmod 2 k)
\end{array}\right.
\end{aligned}
$$

for $2 \leq i, j \leq n$. The aim of this paper is to study the determinants of such matrices related to certain sequences $\alpha$ and $\beta$, and some natural numbers $k$.

## 1. Introduction

In [1], R. Bacher considered the determinants of matrices associated to the Pascal triangle. Furthermore, he introduced the generalized Pascal triangles as follows. Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ and $\beta=\left(\beta_{1}, \beta_{2}, \ldots\right)$ be two sequences starting with a common first term $\alpha_{1}=\beta_{1}$. Define a matrix $P_{\alpha, \beta}(n)$ of order $n$ with coefficients $p_{i, j}$ by setting $p_{i, 1}=\beta_{i}, p_{1, i}=\alpha_{i}$ for $1 \leq i \leq n$ and $p_{i, j}=p_{i-1, j}+$ $p_{i, j-1}$ for $2 \leq i, j \leq n$. The infinite matrix $P_{\alpha, \beta}(\infty)$ is called the generalized Pascal triangle associated to the sequences $\alpha$ and $\beta$. In addition he investigated some other similar constructions and made many interesting observations and posed some conjectures. Some of his conjectures were thoroughly investigated in [3] with positive answers.

In constructing the generalized Pascal triangles or the other similar constructions in which the coefficients, except for the first row and column, are determined by a recursive relation, only one recursive relation is used. Here we are willing to construct some similar arrangements associated to two arbitrary sequences $\alpha$ and $\beta$ being in the first row and column, respectively, and the remaining coefficients are determined by two different recursive relations. Let us define this more precisely as follows.

[^0]Definition. Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ and $\beta=\left(\beta_{1}, \beta_{2}, \ldots\right)$ be two sequences starting with a common first term $\alpha_{1}=\beta_{1}$ and $k$ be a natural number. Define a $\operatorname{matrix} A_{\alpha, \beta}^{(k, \pm)}(n)$ of order $n$ with coefficients $a_{i, j}$ by setting $a_{i, 1}=\beta_{i}, a_{1, i}=\alpha_{i}$ for $1 \leq i \leq n$ and

$$
a_{i, j}=\left\{\begin{array}{lll}
a_{i-1, j-1}+a_{i-1, j} & \text { if } \quad j \equiv 2,3,4, \ldots, k+1 & (\bmod 2 k) \\
a_{i-1, j-1}-a_{i-1, j} & \text { if } \quad j \equiv k+2, \ldots, 2 k+1 & (\bmod 2 k)
\end{array}\right.
$$

for $2 \leq i, j \leq n$. When $k=1$, we put $A_{\alpha, \beta}^{ \pm}(n)=A_{\alpha, \beta}^{(1, \pm)}(n)$.
In general, we are interested in the sequence of the determinants

$$
\left(\operatorname{det} A_{\alpha, \beta}^{(k, \pm)}(1), \operatorname{det} A_{\alpha, \beta}^{(k, \pm)}(2), \ldots, \operatorname{det} A_{\alpha, \beta}^{(k, \pm)}(n), \ldots\right)
$$

where $\alpha$ and $\beta$ are certain sequences having a common first entry.
On the other hand, when we consider the constant sequence $\alpha=(1,1,1, \ldots)$, we notice that the generalized Pascal triangle $P_{\alpha, \alpha}(\infty)$ is, in fact, the classical Pascal triangle. Hence, in the early studies, we restrict our investigation to this sequence $\alpha=(1,1,1, \ldots)$ only, and we consider the principal minors of infinite matrices $A_{\alpha, \alpha}^{(k, \pm)}(\infty)$.

In this research, it has been tried to prove three theorems.
Theorem 1.1. The matrices $A_{\alpha, \alpha}^{ \pm}(n)$ associated to the sequence $\alpha=(1,1, \ldots)$ have the determinant $3^{\left[\frac{n-1}{2}\right]}$ for every natural number $n$. In other words, we have

$$
\operatorname{det} A_{\alpha, \alpha}^{ \pm}(n)= \begin{cases}3^{l-1} & \text { if } \quad n=2 l, \quad(l=1,2, \ldots) \\ 3^{l} & \text { if } \quad n=2 l+1 . \quad(l=0,1,2, \ldots)\end{cases}
$$

Theorem 1.2. The sequence $\left(\operatorname{det} A_{\alpha, \alpha}^{(2, \pm)}(n)\right)$ of determinants associated to the sequence $\alpha=(1,1,1, \ldots)$ satisfies the following

$$
\operatorname{det} A_{\alpha, \alpha}^{(2, \pm)}(n)= \begin{cases}(-5)^{2 l-1} & \text { if } n=4 l, \quad(l=1,2, \ldots) \\ (-5)^{2 l} & \text { if } n=4 l+r . \quad(r=1,2,3 ; l=0,1,2, \ldots)\end{cases}
$$

Theorem 1.3. The sequence $\left(\operatorname{det} A_{\alpha, \alpha}^{(3, \pm)}(n)\right)$ of determinants associated to the sequence $\alpha=(1,1,1, \ldots)$ satisfies the following

$$
\operatorname{det} A_{\alpha, \alpha}^{(3, \pm)}(n)= \begin{cases}11^{3 l-1} & \text { if } n=6 l, \quad(l=1,2, \ldots) \\ 11^{3 l} & \text { if } n=6 l+r,(r=1,2,3,4 ; l=0,1,2, \ldots) \\ 11^{3 l+1} & \text { if } n=6 l+5 .(l=0,1,2, \ldots)\end{cases}
$$

Here, we have the following conjecture:
Conjecture. Let $k$ and $n$ be natural numbers and $n-1=r k+s$ for some $r, s$ with $r \geq 0$ and $0 \leq s<k$. Let $\alpha=(1,1,1, \ldots)$. Then we have

$$
\operatorname{det} A_{\alpha, \alpha}^{(k, \pm)}(n)= \begin{cases}\omega^{r k / 2} & \text { if } r \text { is even } \\ \omega^{k(r-1) / 2+s} & \text { if } r \text { is odd }\end{cases}
$$

where $\omega=\left[1-(-2)^{k+2}\right] / 3$.

## 2. Main results

As we mentioned before, we should concentrate on the sequence of determinants

$$
\left(\operatorname{det} A_{\alpha, \alpha}^{(k, \pm)}(1), \operatorname{det} A_{\alpha, \alpha}^{(k, \pm)}(2), \ldots, \operatorname{det} A_{\alpha, \alpha}^{(k, \pm)}(n), \ldots\right)
$$

for certain $k$. Therefore, in order to start, we consider the case $k=1$, and prove the following theorem.

Theorem 1. The matrices $A_{\alpha, \alpha}^{ \pm}(n)$ associated to the sequence $\alpha=(1,1,1, \ldots)$ have the determinant $3^{\left[\frac{n-1}{2}\right]}$ for every natural number $n$.

Proof. We apply LU-factorization method (see [2]). We claim that

$$
A_{\alpha, \alpha}^{ \pm}(n)=L \cdot U
$$

where $L=A_{\beta, \alpha}^{ \pm}(n)$ with $\beta=(1,0,0,0, \ldots)$, and where

$$
U=\left[\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{n}
\end{array}\right]
$$

with

$$
U_{i}= \begin{cases}(\underbrace{1,1,1, \ldots, 1)}_{n \text { times }} & \text { if } i=1 \\ \underbrace{0,0, \ldots, 0}_{i-1 \text { times }}, \underbrace{\left.1,-1,1,-1, \ldots, u_{i, n-1}, u_{i, n}\right)}_{n-i+1 \text { times }(2-\text { periodic })} & \text { if } i \stackrel{2}{=0} \\ \underbrace{0,0, \ldots, 0}_{i-1 \text { times }}, \underbrace{3,-1,3,-1,3, \ldots, u_{i, n-1}, u_{i, n}}_{n-i+1 \text { times }(2-\text { periodic })}) & \text { if } i>1 \text { and } i \xlongequal{2} 1\end{cases}
$$

and $\left(u_{i, n-1}, u_{i, n}\right)$ is satisfied in Table 1.
Table 1.

| $i \backslash n$ | $n \stackrel{2}{\equiv} 0$ | $n \stackrel{2}{\equiv} 1$ |
| :--- | :--- | :--- |
| $i \stackrel{2}{\equiv} 0$ | $(-1,1)$ | $(1,-1)$ |
| $i \stackrel{2}{\equiv} 1$ | $(3,-1)$ | $(-1,3)$ |

The matrix $L$ is a lower triangular matrix with 1 's on the diagonal, whereas $U$ is an upper triangular matrix with diagonal entries

$$
\begin{array}{ll}
1 & \text { if } n=1, \\
1,1 & \text { if } n=2, \\
1, \underbrace{1,3,1,3,1,3, \ldots, 1,3}_{n-1 \text { times }(2-\text { periodic })} & \text { if } n>1 \text { and } n \stackrel{2}{=} 1, \\
1, \underbrace{1,3,1,3,1,3, \ldots, 3,1}_{n-1 \text { times }(2-\text { periodic })} & \text { if } n>2 \text { and } n \stackrel{2}{=} 0 .
\end{array}
$$

Since $\operatorname{det} L=1$ and $\operatorname{det} U=3^{\left[\frac{n-1}{2}\right]}$, it is obvious that the claimed factorization of $A_{\alpha, \alpha}^{ \pm}(n)$ immediately implies the validity of the theorem.

Suppose that

$$
L=\left(l_{i, j}\right)_{1 \leq i, j \leq n} \quad \text { and } \quad U=\left(u_{i, j}\right)_{1 \leq i, j \leq n}
$$

Then by definition, we have $l_{1,1}=1, l_{1, j}=0, l_{i, 1}=1$ for $2 \leq i, j \leq n$ and

$$
l_{i, j}= \begin{cases}l_{i-1, j-1}+l_{i-1, j} & \text { if } j \stackrel{2}{=} 0  \tag{1}\\ l_{i-1, j-1}-l_{i-1, j} & \text { if } j \stackrel{2}{=} 1\end{cases}
$$

for $2 \leq i, j \leq n$. Also we have
(2) $\quad\left(u_{1, j}, u_{2, j}, \ldots, u_{n, j}\right)^{T}= \begin{cases}(1,0,0, \ldots, 0)^{T} & j=1, \\ (1, \underbrace{1,-1,1,-1, \ldots,-1,1}_{j-1 \text { times }(2-\text { periodic })}, \underbrace{0, \ldots, 0}_{n-j})^{T} & j \stackrel{2}{\equiv} 0, \\ (1, \underbrace{-1,3,-1,3, \ldots,-1,3}_{j-1 \text { times }(2-\text { periodic })}, \underbrace{0, \ldots, 0}_{n-j})^{T} & j \stackrel{2}{\equiv} 1 .\end{cases}$

For the proof of the claimed factorization we compute the $(i, j)$-entry of $L \cdot U$, that is

$$
(L \cdot U)_{i, j}=\sum_{k=1}^{n} l_{i, k} u_{k, j}
$$

It is easy to see that it is enough to show that $(L \cdot U)_{1, j}=1,(L \cdot U)_{i, 1}=1$ for $1 \leq i, j \leq n$ and

$$
(L \cdot U)_{i, j}= \begin{cases}(L \cdot U)_{i-1, j-1}+(L \cdot U)_{i-1, j} & j \stackrel{2}{=} 0 \\ (L \cdot U)_{i-1, j-1}-(L \cdot U)_{i-1, j} & j \stackrel{2}{\equiv} 1\end{cases}
$$

for $2 \leq i, j \leq n$, in order to prove the theorem.
Let us do the required calculations. First, suppose that $i=1$. Then

$$
\begin{equation*}
(L \cdot U)_{1, j}=\sum_{k=1}^{n} l_{1, k} u_{k, j}=l_{1,1} u_{1, j}=1 . \tag{3}
\end{equation*}
$$

Next, suppose that $j=1$. In this case we obtain

$$
\begin{equation*}
(L \cdot U)_{i, 1}=\sum_{k=1}^{n} l_{i, k} u_{k, 1}=l_{i, 1} u_{1,1}=1 \tag{4}
\end{equation*}
$$

Finally, we assume that $2 \leq i, j \leq n$. We split the proof into two cases, according to the following possibilities for $j$.

Case 1. $j \stackrel{2}{=} 0$. In this case we claim that

$$
\begin{equation*}
(L \cdot U)_{i, j}=(L \cdot U)_{i-1, j-1}+(L \cdot U)_{i-1, j} . \tag{5}
\end{equation*}
$$

Since $j-1 \stackrel{2}{\equiv} 1$, by (2) we get

$$
(L \cdot U)_{i-1, j-1}=\sum_{k=1}^{n} l_{i-1, k} u_{k, j-1}=1-\sum_{k=1}^{\frac{j-2}{2}} l_{i-1,2 k}+3 \sum_{k=1}^{\frac{j-2}{2}} l_{i-1,2 k+1},
$$

and since $j \stackrel{2}{\equiv} 0$ we obtain

$$
(L \cdot U)_{i-1, j}=\sum_{k=1}^{n} l_{i-1, k} u_{k, j}=1+\sum_{k=1}^{\frac{j}{2}} l_{i-1,2 k}-\sum_{k=1}^{\frac{j-2}{2}} l_{i-1,2 k+1},
$$

and ultimately

$$
\begin{equation*}
(L \cdot U)_{i-1, j-1}+(L \cdot U)_{i-1, j}=2+2 \sum_{k=1}^{\frac{j-2}{2}} l_{i-1,2 k+1}+l_{i-1, j} . \tag{6}
\end{equation*}
$$

Again, since $j \stackrel{2}{=} 0$ we obtain

$$
(L \cdot U)_{i, j}=\sum_{k=1}^{n} l_{i, k} u_{k, j}=l_{i, 1}+\sum_{k=1}^{\frac{j}{2}} l_{i, 2 k}-\sum_{k=1}^{\frac{j-2}{2}} l_{i, 2 k+1},
$$

and by (1) we get

$$
(L \cdot U)_{i, j}=l_{i, 1}+\sum_{k=1}^{\frac{j}{2}}\left(l_{i-1,2 k-1}+l_{i-1,2 k}\right)-\sum_{k=1}^{\frac{j-2}{2}}\left(l_{i-1,2 k}-l_{i-1,2 k+1}\right),
$$

and after some further simplification we obtain

$$
\begin{equation*}
(L \cdot U)_{i, j}=2+2 \sum_{k=1}^{\frac{j-2}{2}} l_{i-1,2 k+1}+l_{i-1, j} . \tag{7}
\end{equation*}
$$

Now, from (6) and (7) we obtain (5).
Case 2. $j \stackrel{2}{\equiv}$ 1. In this case we claim that

$$
\begin{equation*}
(L \cdot U)_{i, j}=(L \cdot U)_{i-1, j-1}-(L \cdot U)_{i-1, j} . \tag{8}
\end{equation*}
$$

Here, since $j-1 \stackrel{2}{=} 0$, by (2) we obtain

$$
(L \cdot U)_{i-1, j-1}=\sum_{k=1}^{n} l_{i-1, k} u_{k, j-1}=1+\sum_{k=1}^{\frac{j-1}{2}} l_{i-1,2 k}-\sum_{k=1}^{\frac{j-3}{2}} l_{i-1,2 k+1}
$$

and similarly we deduce that

$$
(L \cdot U)_{i-1, j}=\sum_{k=1}^{n} l_{i-1, k} u_{k, j}=1-\sum_{k=1}^{\frac{j-1}{2}} l_{i-1,2 k}+3 \sum_{k=1}^{\frac{j-1}{2}} l_{i-1,2 k+1}
$$

because $j \stackrel{2}{=} 1$. Therefore by an easy calculation we conclude that

$$
\begin{equation*}
(L \cdot U)_{i-1, j-1}-(L \cdot U)_{i-1, j}=2 \sum_{k=1}^{\frac{j-1}{2}} l_{i-1,2 k}-4 \sum_{k=1}^{\frac{j-3}{2}} l_{i-1,2 k+1}-3 l_{i-1, j} \tag{9}
\end{equation*}
$$

Again, since $j \stackrel{2}{\equiv} 1$ we have

$$
(L \cdot U)_{i, j}=\sum_{k=1}^{n} l_{i, k} u_{k, j}=l_{i, 1}-\sum_{k=1}^{\frac{j-1}{2}} l_{i, 2 k}+3 \sum_{k=1}^{\frac{j-1}{2}} l_{i, 2 k+1}
$$

Now, by (1) we obtain

$$
(L \cdot U)_{i, j}=1-\sum_{k=1}^{\frac{j-1}{2}}\left(l_{i-1,2 k-1}+l_{i-1,2 k}\right)+3 \sum_{k=1}^{\frac{j-1}{2}}\left(l_{i-1,2 k}-l_{i-1,2 k+1}\right)
$$

and simply we can observe that

$$
\begin{equation*}
(L \cdot U)_{i, j}=2 \sum_{k=1}^{\frac{j-1}{2}} l_{i-1,2 k}-4 \sum_{k=1}^{\frac{j-3}{2}} l_{i-1,2 k+1}-3 l_{i-1, j} \tag{10}
\end{equation*}
$$

Now, from (9) and (10) we obtain (8).
Therefore, from (3), (4), (5) and (8) we conclude the theorem.
Next, we focus on the sequence $\left(\operatorname{det} A_{\alpha, \alpha}^{(2, \pm)}(n)\right)$ for $n \in \mathbb{N}$.
Theorem 2. The sequence $\left(\operatorname{det} A_{\alpha, \alpha}^{(2, \pm)}(n)\right)$ of determinants associated to the sequence $\alpha=(1,1,1, \ldots)$ satisfies the following

$$
\operatorname{det} A_{\alpha, \alpha}^{(2, \pm)}(n)= \begin{cases}(-5)^{2 l-1} & \text { if } n=4 l, \quad(l=1,2, \ldots) \\ (-5)^{2 l} & \text { if } n=4 l+r .(r=1,2,3, l=0,1,2, \ldots)\end{cases}
$$

Proof. Again, we use the LU-factorization method. Here, we claim that

$$
A_{\alpha, \alpha}^{(2, \pm)}(n)=L \cdot U
$$

where $L=A_{\beta, \alpha}^{(2, \pm)}(n)$ with $\beta=(1,0,0, \ldots)$ and where

$$
U=\left[\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{n}
\end{array}\right]
$$

with

$$
\begin{aligned}
& (\underbrace{(\underbrace{1,1,1, \ldots, 1})}_{n \text { times }} \quad i=1, \\
& U_{i}= \begin{cases}(\underbrace{0,0, \ldots, 0}_{i-1 \text { times }}, \underbrace{-5,1,1,-1,-5,1,1,-1, \ldots, u_{i, n-1}, u_{i, n}}_{n-i+1 \text { times }(4-\text { periodic) }}) & i \stackrel{4}{=} 0, \\
(\underbrace{0,0, \ldots, 0}_{i-1 \text { times }}, \underbrace{-5,3,-1,-1,-5,3,-1,-1, \ldots, u_{i, n-1}, u_{i, n}}_{n-i+1 \text { times }(4 \text {-periodic) }}) & i \stackrel{4}{=} 1, \\
\underbrace{0,0, \ldots, 0}_{i-1 \text { times }}, \underbrace{\left.1,1,-1,-1,1,1,-1,-1, \ldots, u_{i, n-1}, u_{i, n}\right)}_{n-i+1 \text { times }(4-\text { periodic })} & i \stackrel{4}{=} 2, \\
\underbrace{0,0, \ldots, 0}_{i-1 \text { times }}, \underbrace{\left.1,3,1,-1,1,3,1,-1, \ldots, u_{i, n-1}, u_{i, n}\right)}_{n-i+1 \text { times }(4-\text { periodic })} & i \stackrel{4}{=} 3,\end{cases}
\end{aligned}
$$

and $\left(u_{i, n-1}, u_{i, n}\right)$ is satisfied in Table 2.

## Table 2.

| $i \backslash n$ | $n \stackrel{4}{\equiv} 0$ | $n \stackrel{4}{\equiv} 1$ | $n \stackrel{4}{\equiv} 2$ | $n \xlongequal{\equiv} 3$ |
| :--- | :--- | :--- | :--- | :--- |
| $i \stackrel{4}{\equiv} 0$ | $(-1,-5)$ | $(-5,1)$ | $(1,1)$ | $(1,-1)$ |
| $i \stackrel{4}{\equiv} 1$ | $(-1,-1)$ | $(-1,-5)$ | $(-5,3)$ | $(3,-1)$ |
| $i \stackrel{4}{\equiv} 2$ | $(1,-1)$ | $(-1,-1)$ | $(-1,1)$ | $(1,1)$ |
| $i \stackrel{4}{\equiv} 3$ | $(1,3)$ | $(3,1)$ | $(1,-1)$ | $(-1,1)$ |

The matrix $L$ is a lower triangular matrix with 1's on the diagonal, whereas $U$ is an upper triangular matrix with diagonal entries

$$
1, \underbrace{1,1,-5,-5,1,1, \ldots, u_{n-1, n-1}, u_{n, n}}_{4-\text { periodic }}
$$

where

$$
\left(u_{n-1, n-1}, u_{n, n}\right)= \begin{cases}(1,-5) & \text { if } n \stackrel{4}{=} 0 \\ (-5,-5) & \text { if } n \stackrel{4}{=} 1 \\ (-5,1) & \text { if } n \xlongequal[=]{=} 2 \\ (1,1) & \text { if } n \xlongequal[=]{=} 3\end{cases}
$$

Since $\operatorname{det} L=1$ and

$$
\operatorname{det} U=\left\{\begin{array}{lll}
(-5)^{2 l-1} & \text { if } \quad n=4 l, \quad(l=1,2, \ldots) \\
(-5)^{2 l} & \text { if } \quad n=4 l+r . \quad(r=1,2,3, l=0,1,2, \ldots)
\end{array}\right.
$$

Again, it is immediately obvious that the claimed factorization of $A_{\alpha, \alpha}^{(2, \pm)}(n)$ implies the validity of the theorem.

Suppose that

$$
L=\left(l_{i, j}\right)_{1 \leq i, j \leq n} \quad \text { and } \quad U=\left(u_{i, j}\right)_{1 \leq i, j \leq n}
$$

Then by definition, we have $l_{1,1}=1, l_{1, j}=0, l_{i, 1}=1$ for $2 \leq i, j \leq n$ and

$$
l_{i, j}= \begin{cases}l_{i-1, j-1}+l_{i-1, j} & \text { if } j \stackrel{4}{=} 2,3  \tag{11}\\ l_{i-1, j-1}-l_{i-1, j} & \text { if } j \stackrel{4}{=} 0,1\end{cases}
$$

for $2 \leq i, j \leq n$. Moreover, the $j$ th column of $U$ can be considered as follows:
$\left(u_{1, j}, \ldots, u_{n, j}\right)^{T}= \begin{cases}(1,0,0, \ldots, 0)^{T} & j=1, \\ (1, \underbrace{-1,3,-5,-1,-1,3,-5,-1, \ldots, 3,-5}_{j-1 \text { times }(4-\text { periodic })}, \underbrace{0, \ldots, 0}_{n-j})^{T} & j \stackrel{4}{\equiv} 0, \\ (1, \underbrace{-1,1,1,-5,-1,1,1,-5, \ldots, 1,-5}_{j-1 \text { times }(4-\text { periodic })}, \underbrace{0, \ldots, 0}_{n-j})^{T} & j \stackrel{4}{\equiv} 1, \\ (1, \underbrace{1,-1,1,3,1,-1,1,3, \ldots, 3,1}_{j-1 \text { times }(4-\text { periodic) }}, \underbrace{0, \ldots, 0}_{n-j})^{T} & j \stackrel{4}{=} 2, \\ (1, \underbrace{1,1,-1,-1,1,1,-1,-1, \ldots, 1,1}_{j-1 \text { times }(4-\text { periodic })}, \underbrace{0, \ldots, 0}_{n-j})^{T} & j \stackrel{4}{\equiv} 3 .\end{cases}$
For the proof of the claimed factorization we need again some calculations. In fact, the $(i, j)$-entry of $L \cdot U$ is

$$
(L \cdot U)_{i, j}=\sum_{k=1}^{n} l_{i, k} u_{k, j}
$$

It is easy to see that it is enough to show that $(L \cdot U)_{1, j}=1,(L \cdot U)_{i, 1}=1$ for $1 \leq i, j \leq n$ and

$$
(L \cdot U)_{i, j}= \begin{cases}(L \cdot U)_{i-1, j-1}+(L \cdot U)_{i-1, j} & j \stackrel{4}{\equiv} 2,3 \\ (L \cdot U)_{i-1, j-1}-(L \cdot U)_{i-1, j} & j \stackrel{4}{\equiv} 0,1\end{cases}
$$

for $2 \leq i, j \leq n$, in order to prove the theorem.
Again, we verify the claim by a direct calculation. First, suppose that $i=1$.
Then

$$
\begin{equation*}
(L \cdot U)_{1, j}=\sum_{k=1}^{n} l_{1, k} u_{k, j}=l_{1,1} u_{1, j}=1 . \tag{13}
\end{equation*}
$$

Next, suppose that $j=1$. In this case we obtain

$$
\begin{equation*}
(L \cdot U)_{i, 1}=\sum_{k=1}^{n} l_{i, k} u_{k, 1}=l_{i, 1} u_{1,1}=1 \tag{14}
\end{equation*}
$$

Finally, we assume that $2 \leq i, j \leq n$. We split the proof into four cases, according to the following possibilities for $j$.

Case 1. $j \stackrel{4}{=} 0$. In this case we claim that

$$
\begin{equation*}
(L \cdot U)_{i, j}=(L \cdot U)_{i-1, j-1}-(L \cdot U)_{i-1, j} \tag{15}
\end{equation*}
$$

Since $j-1 \stackrel{4}{\equiv} 3$, we obtain
$(L \cdot U)_{i-1, j-1}=l_{i-1,1}-\sum_{k=1}^{\frac{j-4}{4}} l_{i-1,4 k}-\sum_{k=1}^{\frac{j-4}{4}} l_{i-1,4 k+1}+\sum_{k=0}^{\frac{j-4}{4}} l_{i-1,4 k+2}+\sum_{k=0}^{\frac{j-4}{4}} l_{i-1,4 k+3}$, and since $j \stackrel{4}{\equiv} 0$, it follows that

$$
(L \cdot U)_{i-1, j}=l_{i-1,1}-5 \sum_{k=1}^{\frac{j}{4}} l_{i-1,4 k}-\sum_{k=1}^{\frac{j-4}{4}} l_{i-1,4 k+1}-\sum_{k=0}^{\frac{j-4}{4}} l_{i-1,4 k+2}+3 \sum_{k=0}^{\frac{j-4}{4}} l_{i-1,4 k+3} .
$$

Consequently, we obtain

$$
\begin{equation*}
(L \cdot U)_{i-1, j-1}-(L \cdot U)_{i-1, j}=4 \sum_{k=1}^{\frac{j-4}{4}} l_{i-1,4 k}+2 \sum_{k=0}^{\frac{j-4}{4}} l_{i-1,4 k+2}-2 \sum_{k=0}^{\frac{j-4}{4}} l_{i-1,4 k+3}-5 l_{i-1, j} . \tag{16}
\end{equation*}
$$

On the other hand since $j \stackrel{4}{\equiv} 0$, we get

$$
(L \cdot U)_{i, j}=l_{i, 1}-5 \sum_{k=1}^{\frac{j}{4}} l_{i, 4 k}-\sum_{k=1}^{\frac{j-4}{4}} l_{i, 4 k+1}-\sum_{k=0}^{\frac{j-4}{4}} l_{i, 4 k+2}+3 \sum_{k=0}^{\frac{j-4}{4}} l_{i, 4 k+3} .
$$

Now by (11) we deduce that

$$
\begin{aligned}
(L \cdot U)_{i, j}= & 1-5 \sum_{k=1}^{\frac{j}{4}}\left(l_{i-1,4 k-1}-l_{i-1,4 k}\right)-\sum_{k=1}^{\frac{j-4}{4}}\left(l_{i-1,4 k}-l_{i-1,4 k+1}\right) \\
& -\sum_{k=0}^{\frac{j-4}{4}}\left(l_{i-1,4 k+1}+l_{i-1,4 k+2}\right)+3 \sum_{k=0}^{\frac{j-4}{4}}\left(l_{i-1,4 k+2}+l_{i-1,4 k+3}\right),
\end{aligned}
$$

and after some further simplifications the expression reduces to

$$
\begin{equation*}
(L \cdot U)_{i, j}=4 \sum_{k=1}^{\frac{j-4}{4}} l_{i-1,4 k}+2 \sum_{k=0}^{\frac{j-4}{4}} l_{i-1,4 k+2}-2 \sum_{k=0}^{\frac{j-4}{4}} l_{i-1,4 k+3}-5 l_{i-1, j} . \tag{17}
\end{equation*}
$$

Now, from (16) and (17) we obtain (15).
Case 2. $j \stackrel{4}{\equiv}$ 1. Here, we claim that

$$
\begin{equation*}
(L \cdot U)_{i, j}=(L \cdot U)_{i-1, j-1}-(L \cdot U)_{i-1, j} \tag{18}
\end{equation*}
$$

Since $j-1 \stackrel{4}{=} 0$, we obtain

$$
(L \cdot U)_{i-1, j-1}=l_{i-1,1}-5 \sum_{k=1}^{\frac{j-1}{4}} l_{i-1,4 k}-\sum_{k=1}^{\frac{j-5}{4}} l_{i-1,4 k+1}-\sum_{k=0}^{\frac{j-5}{4}} l_{i-1,4 k+2}+3 \sum_{k=0}^{\frac{j-5}{4}} l_{i-1,4 k+3} .
$$

Similarly, since $j \stackrel{4}{\equiv} 1$ it follows that

$$
(L \cdot U)_{i-1, j}=l_{i-1,1}+\sum_{k=1}^{\frac{j-1}{4}} l_{i-1,4 k}-5 \sum_{k=1}^{\frac{j-1}{4}} l_{i-1,4 k+1}-\sum_{k=0}^{\frac{j-5}{4}} l_{i-1,4 k+2}-\sum_{k=0}^{\frac{j-5}{4}} l_{i-1,4 k+3} .
$$

Therefore, we have

$$
\begin{equation*}
(L \cdot U)_{i-1, j-1}-(L \cdot U)_{i-1, j}=-6 \sum_{k=1}^{\frac{j-4}{4}} l_{i-1,4 k}+4 \sum_{k=1}^{\frac{j-5}{4}} l_{i-1,4 k+1}+4 \sum_{k=0}^{\frac{j-5}{4}} l_{i-1,4 k+3}-5 l_{i-1, j} . \tag{19}
\end{equation*}
$$

Furthermore, since $j \stackrel{4}{\equiv} 1$ we obtain

$$
(L \cdot U)_{i, j}=l_{i, 1}+\sum_{k=1}^{\frac{j-1}{4}} l_{i, 4 k}-5 \sum_{k=1}^{\frac{j-1}{4}} l_{i, 4 k+1}-\sum_{k=0}^{\frac{j-5}{4}} l_{i, 4 k+2}+\sum_{k=0}^{\frac{j-5}{4}} l_{i, 4 k+3} .
$$

Now we apply (11), to get

$$
\begin{aligned}
(L \cdot U)_{i, j}=1 & +\sum_{k=1}^{\frac{j-1}{4}}\left(l_{i-1,4 k-1}-l_{i-1,4 k}\right)-5 \sum_{k=1}^{\frac{j-4}{4}}\left(l_{i-1,4 k}-l_{i-1,4 k+1}\right) \\
& -\sum_{k=0}^{\frac{j-5}{4}}\left(l_{i-1,4 k+1}+l_{i-1,4 k+2}\right)+\sum_{k=0}^{\frac{j-5}{4}}\left(l_{i-1,4 k+2}+l_{i-1,4 k+3}\right)
\end{aligned}
$$

After some simplifications this leads to

$$
\begin{equation*}
(L \cdot U)_{i, j}=-6 \sum_{k=1}^{\frac{j-4}{4}} l_{i-1,4 k}+4 \sum_{k=1}^{\frac{j-5}{4}} l_{i-1,4 k+1}+4 \sum_{k=0}^{\frac{j-5}{4}} l_{i-1,4 k+3}-5 l_{i-1, j} \tag{20}
\end{equation*}
$$

Through comparing (19) and (20), we can get (18).
Case 3. $j \stackrel{4}{=} 2$. In this case we claim that

$$
\begin{equation*}
(L \cdot U)_{i, j}=(L \cdot U)_{i-1, j-1}+(L \cdot U)_{i-1, j} \tag{21}
\end{equation*}
$$

Here since $j-1 \stackrel{4}{\equiv} 1$, by (12) we obtain
$(L \cdot U)_{i-1, j-1}=1+\sum_{k=1}^{\frac{j-2}{4}} l_{i-1,4 k}-5 \sum_{k=1}^{\frac{j-2}{4}} l_{i-1,4 k+1}-\sum_{k=0}^{\frac{j-6}{4}} l_{i-1,4 k+2}+\sum_{k=0}^{\frac{j-6}{4}} l_{i-1,4 k+3}$,
and since $j \stackrel{4}{\equiv} 2$ it follows that

$$
(L \cdot U)_{i-1, j}=1+\sum_{k=1}^{\frac{j-2}{4}} l_{i-1,4 k}+3 \sum_{k=1}^{\frac{j-2}{4}} l_{i-1,4 k+1}+\sum_{k=0}^{\frac{j-2}{4}} l_{i-1,4 k+2}-\sum_{k=0}^{\frac{j-6}{4}} l_{i-1,4 k+3}
$$

Therefore we have
(22) $(L \cdot U)_{i-1, j-1}+(L \cdot U)_{i-1, j}=2+2 \sum_{k=1}^{\frac{j-2}{4}} l_{i-1,4 k}-2 \sum_{k=1}^{\frac{j-2}{4}} l_{i-1,4 k+1}+l_{i-1, j}$.

On the other hand, since $j \stackrel{4}{\equiv} 2$ we deduce that

$$
(L \cdot U)_{i, j}=1+\sum_{k=1}^{\frac{j-2}{4}} l_{i, 4 k}+3 \sum_{k=1}^{\frac{j-2}{4}} l_{i, 4 k+1}+\sum_{k=0}^{\frac{j-2}{4}} l_{i, 4 k+2}-\sum_{k=0}^{\frac{j-6}{4}} l_{i, 4 k+3},
$$

and by (11) we conclude that

$$
\begin{aligned}
(L \cdot U)_{i, j}= & 1+\sum_{k=1}^{\frac{j-2}{4}}\left(l_{i-1,4 k-1}-l_{i-1,4 k}\right)+3 \sum_{k=1}^{\frac{j-2}{4}}\left(l_{i-1,4 k}-l_{i-1,4 k+1}\right) \\
& +\sum_{k=0}^{\frac{j-2}{4}}\left(l_{i-1,4 k+1}+l_{i-1,4 k+2}\right)-\sum_{k=0}^{\frac{j-6}{4}}\left(l_{i-1,4 k+2}+l_{i-1,4 k+3}\right) .
\end{aligned}
$$

Now, an easy calculation shows that

$$
\begin{equation*}
(L \cdot U)_{i, j}=2+2 \sum_{k=1}^{\frac{j-2}{4}} l_{i-1,4 k}-2 \sum_{k=1}^{\frac{\frac{j-2}{4}}{4}} l_{i-1,4 k+1}+l_{i-1, j} . \tag{23}
\end{equation*}
$$

By comparing (22) and (23), we may obtain (21).
Case 4. $j \stackrel{4}{=} 3$. In this case, we claim that

$$
\begin{equation*}
(L \cdot U)_{i, j}=(L \cdot U)_{i-1, j-1}+(L \cdot U)_{i-1, j} . \tag{24}
\end{equation*}
$$

Since $j-1 \stackrel{4}{=} 2$, we obtain
$(L \cdot U)_{i-1, j-1}=1+\sum_{k=1}^{\frac{j-3}{4}} l_{i-1,4 k}+3 \sum_{k=1}^{\frac{j-3}{4}} l_{i-1,4 k+1}+\sum_{k=0}^{\frac{j-3}{4}} l_{i-1,4 k+2}-\sum_{k=0}^{\frac{j-7}{4}} l_{i-1,4 k+3}$.
Similarly, since $j \stackrel{4}{=} 3$ it follows that

$$
(L \cdot U)_{i-1, j}=1-\sum_{k=1}^{\frac{j-3}{4}} l_{i-1,4 k}-\sum_{k=1}^{\frac{j-3}{4}} l_{i-1,4 k+1}-\sum_{k=0}^{\frac{j-3}{4}} l_{i-1,4 k+2}+\sum_{k=0}^{\frac{j-3}{4}} l_{i-1,4 k+3} .
$$

Therefore, we have
(25) $(L \cdot U)_{i-1, j-1}+(L \cdot U)_{i-1, j}=2+2 \sum_{k=1}^{\frac{j-3}{4}} l_{i-1,4 k+1}+2 \sum_{k=0}^{\frac{j-3}{4}} l_{i-1,4 k+2}+l_{i-1, j}$.

On the other hand, since $j \stackrel{4}{=} 2$ we obtain

$$
(L \cdot U)_{i, j}=1-\sum_{k=1}^{\frac{j-3}{4}} l_{i, 4 k}-\sum_{k=1}^{\frac{j-3}{4}} l_{i, 4 k+1}+\sum_{k=0}^{\frac{j-3}{4}} l_{i, 4 k+2}-\sum_{k=0}^{\frac{j-3}{4}} l_{i, 4 k+3 .} .
$$

Again by (11) we conclude that

$$
\begin{aligned}
(L \cdot U)_{i, j}= & 1-\sum_{k=1}^{\frac{j-3}{4}}\left(l_{i-1,4 k-1}-l_{i-1,4 k}\right)-\sum_{k=1}^{\frac{j-3}{4}}\left(l_{i-1,4 k}-l_{i-1,4 k+1}\right) \\
& +\sum_{k=0}^{\frac{j-3}{4}}\left(l_{i-1,4 k+1}+l_{i-1,4 k+2}\right)+\sum_{k=0}^{\frac{j-3}{4}}\left(l_{i-1,4 k+2}+l_{i-1,4 k+3}\right)
\end{aligned}
$$

and we easily deduce that

$$
\begin{equation*}
(L \cdot U)_{i, j}=2+2 \sum_{k=1}^{\frac{j-3}{4}} l_{i-1,4 k+1}+2 \sum_{k=0}^{\frac{j-3}{4}} l_{i-1,4 k+2}+l_{i-1, j} . \tag{26}
\end{equation*}
$$

By comparing (25) and (26), we can get (24).
Therefore, from (13), (14), (15), (18), (21) and (24) we conclude the theorem.

In the end, we consider the sequence $\left(\operatorname{det} A_{\alpha, \alpha}^{(3, \pm)}(n)\right)$ for $n \in \mathbb{N}$.
Theorem 3. The sequence $\left(\operatorname{det} A_{\alpha, \alpha}^{(3, \pm)}(n)\right)$ of determinants associated to the sequence $\alpha=(1,1,1, \ldots)$ satisfies the following

$$
\operatorname{det} A_{\alpha, \alpha}^{(3, \pm)}(n)= \begin{cases}11^{3 l-1} & \text { if } n=6 l, \quad(l=1,2, \ldots) \\ 11^{3 l} & \text { if } n=6 l+r,(r=1,2,3,4, l=0,1,2, \ldots) \\ 11^{3 l+1} & \text { if } n=6 l+5 .(l=0,1,2, \ldots)\end{cases}
$$

Proof. The proof is similar to the proof of Theorem 1.1 and Theorem 1.2, and we avoid presenting some of the details. Again, we apply LU-factorization. Here, we claim that

$$
A_{\alpha, \alpha}^{(3, \pm)}(n)=L \cdot U,
$$

where $L=A_{\beta, \alpha}^{(3, \pm)}(n)$ with $\beta=(1,0,0, \ldots)$ is a lower triangular matrix with 1's on the diagonal, and where

$$
U=\left[\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{n}
\end{array}\right]
$$

with
and $\left(u_{i, n-1}, u_{i, n}\right)$ is satisfied in Table 3.
Table 3.

| $i \backslash n$ | $n \stackrel{6}{\equiv} 0$ | $n \stackrel{6}{\equiv} 1$ | $n \stackrel{6}{\equiv} 2$ | $n \xlongequal[\equiv]{\equiv} 3$ | $n \xlongequal{\equiv} 4$ | $n \xlongequal[\equiv]{\equiv}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $i \stackrel{6}{\equiv} 0$ | $(-1,11)$ | $(11,-7)$ | $(-7,1)$ | $(1,1)$ | $(1,-1)$ | $(-1,-1)$ |
| $i \stackrel{6}{\equiv} 1$ | $(-1,-1)$ | $(-1,11)$ | $(11,-5)$ | $(-5,3)$ | $(3,-1)$ | $(-1,-1)$ |
| $i \stackrel{6}{\equiv} 2$ | $(-1,-1)$ | $(-1,-1)$ | $(-1,1)$ | $(1,1)$ | $(1,1)$ | $(1,-1)$ |
| $i \stackrel{6}{\equiv} 3$ | $(3,1)$ | $(1,1)$ | $(1,-1)$ | $(-1,1)$ | $(1,1)$ | $(1,3)$ |
| $i \stackrel{6}{\equiv} 4$ | $(-5,1)$ | $(1,-1)$ | $(-1,1)$ | $(1,-1)$ | $(-1,1)$ | $(1,5)$ |
| $i \stackrel{6}{\equiv} 5$ | $(11,-7)$ | $(-7,3)$ | $(3,-1)$ | $(-1,1)$ | $(1,-1)$ | $(-1,11)$ |

The matrix $U$ is an upper triangular one with diagonal entries

$$
1, \underbrace{1,1,1,11,11,11, \ldots, u_{n-1, n-1}, u_{n, n}}_{6 \text {-periodic }},
$$

where

$$
\left(u_{n-1, n-1}, u_{n, n}\right)= \begin{cases}(11,11) & \text { if } n \stackrel{6}{\equiv} 0 \text { or } 1 \\ (11,1) & \text { if } n \stackrel{6}{\equiv} 2 \\ (1,1) & \text { if } n \stackrel{6}{=} 3 \text { or } 4 \\ (1,11) & \text { if } n \stackrel{6}{\equiv} 5\end{cases}
$$

Since $\operatorname{det} L=1$ and

$$
\operatorname{det} U=\left\{\begin{array}{lll}
11^{3 l-1} & \text { if } \quad n=6 l, \quad(l=1,2, \ldots) \\
11^{3 l} & \text { if } & n=6 l+r, \quad(r=1,2,3,4, l=0,1,2, \ldots) \\
11^{3 l+1} & \text { if } & n=6 l+5, \quad(l=0,1,2, \ldots)
\end{array}\right.
$$

it is obvious that the claimed factorization of $A_{\alpha, \alpha}^{(3, \pm)}(n)$ implies the validity of the theorem.

Let us do the required calculation. Again, we assume that

$$
L=\left(l_{i, j}\right)_{1 \leq i, j \leq n} \quad \text { and } \quad U=\left(u_{i, j}\right)_{1 \leq i, j \leq n}
$$

Then by definition, we have $l_{1,1}=1, l_{1, j}=0, l_{i, 1}=1$ for $2 \leq i, j \leq n$ and the entries $l_{i, j}$ for $2 \leq i, j \leq n$ satisfy

$$
l_{i, j}= \begin{cases}l_{i-1, j-1}+l_{i-1, j} & \text { if } j \stackrel{4}{=} 2,3,4  \tag{27}\\ l_{i-1, j-1}-l_{i-1, j} & \text { if } j \stackrel{4}{=} 5,0,1 .\end{cases}
$$

Moreover, the $j$ th column of $U$ can be considered as follows.

$$
\left(u_{1, j}, \ldots, u_{n, j}\right)^{T}= \begin{cases}(1,0,0, \ldots, 0)^{T} & j=1,  \tag{28}\\ (1, \underbrace{-1,1,1,-7,11,-1, \ldots,-7,11}_{j-1 \text { times }(6-\text { periodic })}, \underbrace{0, \ldots, 0}_{n-j})^{T} & j \stackrel{6}{\equiv} 0, \\ (1, \underbrace{-1,1,-1,3,-7,11, \ldots,-7,11}_{j-1 \text { times }(6-\text { periodic })}, \underbrace{0, \ldots, 0}_{n-j})^{T} & j \stackrel{6}{=} 1, \\ (1, \underbrace{1,-1,1,-1,1,-5, \ldots,-5,1}_{j-1 \text { times }(6-\text { periodic }}, \underbrace{0, \ldots, 0}_{n-j})^{T} & j \stackrel{6}{=} 2, \\ (1, \underbrace{1,1,-1,1,1,3, \ldots, 3,1,1}_{j-1 \text { times }(6-\text { periodic) }}, \underbrace{0, \ldots, 0}_{n-j})^{T} & j \stackrel{6}{\equiv} 3, \\ (1, \underbrace{1,1,1,-1,-1,-1, \ldots, 1,1,1}_{j-1 \text { times }(6-\text { periodic })}, \underbrace{0, \ldots, 0}_{n-j})^{T} & j \stackrel{6}{=} 4, \\ (1, \underbrace{-1,3,-5,11,-1,-1, \ldots,-5,11}_{j-1 \text { times }(6-\text { periodic })}, \underbrace{0, \ldots, 0}_{n-j})^{T} & j \stackrel{6}{=} 5 .\end{cases}
$$

In order to prove the claim we show that the $(i, j)$-entry of $L \cdot U$, that is

$$
(L \cdot U)_{i, j}=\sum_{k=1}^{n} l_{i, k} u_{k, j}
$$

satisfy $(L \cdot U)_{1, j}=1,(L \cdot U)_{i, 1}=1$ for $1 \leq i, j \leq n$ and

$$
(L \cdot U)_{i, j}= \begin{cases}(L \cdot U)_{i-1, j-1}+(L \cdot U)_{i-1, j} & j \stackrel{6}{=} 2,3,4  \tag{29}\\ (L \cdot U)_{i-1, j-1}-(L \cdot U)_{i-1, j} & j \stackrel{6}{=} 5,0,1\end{cases}
$$

for $2 \leq i, j \leq n$.

First assume that $i=1$. Then, in accordance with the definition of $l_{1, j}$, we obtain

$$
(L \cdot U)_{1, j}=\sum_{k=1}^{n} l_{1, k} u_{k, j}=l_{1,1} u_{1, j}=1 .
$$

Next, suppose that $j=1$. In this case by (28) we obtain

$$
(L \cdot U)_{i, 1}=\sum_{k=1}^{n} l_{i, k} u_{k, 1}=l_{i, 1} u_{1,1}=1
$$

Finally, we assume that $2 \leq i, j \leq n$. In this case we must show that the entries $(L \cdot U)_{i, j}$ satisfy (29). Here, there are six cases to distinguish, according to $j \stackrel{6}{\equiv} 0,1,2,3,4$ or 5 . Using similar arguments to those in the proof of Theorem 1.2, we see that the result is true in any cases. For instance, we assume that $j \stackrel{6}{\equiv} 4$. In this case, we must establish that

$$
\begin{equation*}
(L \cdot U)_{i, j}=(L \cdot U)_{i-1, j-1}+(L \cdot U)_{i-1, j} \tag{30}
\end{equation*}
$$

Since $j \stackrel{6}{\equiv} 4$, in according with (28), the right hand of (30) is equal to

$$
\begin{equation*}
2+2 \sum_{k=1}^{\frac{j-4}{6}} l_{i-1,6 k+1}+2 \sum_{k=0}^{\frac{j-4}{6}} l_{i-1,6 k+2}+2 \sum_{k=0}^{\frac{j-4}{6}} l_{i-1,6 k+3}+l_{i-1, j} . \tag{31}
\end{equation*}
$$

Again, since $j \stackrel{4}{\equiv} 2$ by (24), we see that the left-hand of (30) is equal to

$$
\begin{equation*}
1-\sum_{k=1}^{\frac{j-4}{6}} l_{i, 6 k}-\sum_{k=1}^{\frac{j-4}{6}} l_{i, 6 k+1}+\sum_{k=0}^{\frac{j-4}{6}} l_{i, 6 k+2}+\sum_{k=0}^{\frac{j-4}{6}} l_{i, 6 k+3}+\sum_{k=0}^{\frac{j-4}{6}} l_{i, 6 k+4}-\sum_{k=0}^{\frac{j-10}{6}} l_{i, 6 k+5 .} . \tag{32}
\end{equation*}
$$

Now, if we substitute the corresponding value for $l_{i, 6 k+r}(0 \leq r \leq 5)$ from (29), we can conclude

$$
(L \cdot U)_{i, j}=2+2 \sum_{k=1}^{\frac{j-4}{6}} l_{i-1,6 k+1}+2 \sum_{k=0}^{\frac{j-4}{6}} l_{i-1,6 k+2}+2 \sum_{k=0}^{\frac{j-4}{6}} l_{i-1,6 k+3}+l_{i-1, j}
$$

which results in (30). In this way the proof is completed.

## References

[1] R. Bacher, Determinants of matrices related to the Pascal triangle, J. Theor. Nombres Bordeaux 14 (2002), no. 1, 19-41.
[2] C. Krattenthaler, Advanced determinant calculus, Sem. Lothar. Combin. 42 (1999), Art. B42q, 67 pp.
[3] , Evaluations of some determinants of matrices related to the Pascal triangle, Sem. Lothar. Combin. 47 (2001/02), Art. B47g, 19 pp.

Ali Reza Moghaddamfar
Department of Mathematics
Faculty of Science
K. N. Toosi University of Technology
P. O. Box 16315-1618, Tehran, Iran

AND
School of Mathematics
Institute for Studies in Theoretical Physics and Mathematics (IPM)
P. O. Box 19395-5746, Theran, Iran

E-mail address: moghadam@kntu.ac.ir and moghadam@mail.ipm.ir
Seyyed Navid Salehy
Department of Mathematics
Faculty of Science
K. N. Toosi University of Technology
P. O. Box 16315-1618, Tehran, Iran

Seyyed Nima Salehy
Department of Mathematics
Faculty of Science
K. N. Toosi University of Technology
P. O. Box 16315-1618, Tehran, Iran


[^0]:    Received May 23, 2008.
    2000 Mathematics Subject Classification. 11C20, 15A15, 15A36, 15A57.
    Key words and phrases. determinant, LU-factorization, recurrence relation.
    This research was in part supported by a grant from IPM (No. 84200039).

