EVALUATING SOME DETERMINANTS OF MATRICES WITH RECURSIVE ENTRIES

ALI REZA MOGHADDAMFAR, SEYYED NAVID SALEHY, AND SEYYED NIMA SALEHY

ABSTRACT. Let $\alpha = (\alpha_1, \alpha_2, \ldots)$ and $\beta = (\beta_1, \beta_2, \ldots)$ be two sequences with $\alpha_1 = \beta_1$ and k and n be natural numbers. We denote by $A_{\alpha,\beta}^{(k,\pm)}(n)$ the matrix of order n with coefficients $a_{i,j}$ by setting $a_{1,i} = \alpha_i$, $a_{i,1} = \beta_i$ for $1 \leq i \leq n$ and

 $a_{i,j} = \begin{cases} a_{i-1,j-1} + a_{i-1,j} & \text{if} \quad j \equiv 2, 3, 4, \dots, k+1 \pmod{2k} \\ a_{i-1,j-1} - a_{i-1,j} & \text{if} \quad j \equiv k+2, \dots, 2k+1 \pmod{2k} \end{cases}$

for $2 \leq i, j \leq n$. The aim of this paper is to study the determinants of such matrices related to certain sequences α and β , and some natural numbers k.

1. Introduction

In [1], R. Bacher considered the determinants of matrices associated to the Pascal triangle. Furthermore, he introduced the generalized Pascal triangles as follows. Let $\alpha = (\alpha_1, \alpha_2, ...)$ and $\beta = (\beta_1, \beta_2, ...)$ be two sequences starting with a common first term $\alpha_1 = \beta_1$. Define a matrix $P_{\alpha,\beta}(n)$ of order n with coefficients $p_{i,j}$ by setting $p_{i,1} = \beta_i$, $p_{1,i} = \alpha_i$ for $1 \le i \le n$ and $p_{i,j} = p_{i-1,j} + p_{i,j-1}$ for $2 \le i, j \le n$. The infinite matrix $P_{\alpha,\beta}(\infty)$ is called the generalized Pascal triangle associated to the sequences α and β . In addition he investigated some other similar constructions and made many interesting observations and posed some conjectures. Some of his conjectures were thoroughly investigated in [3] with positive answers.

In constructing the generalized Pascal triangles or the other similar constructions in which the coefficients, except for the first row and column, are determined by a recursive relation, only *one* recursive relation is used. Here we are willing to construct some similar arrangements associated to two arbitrary sequences α and β being in the first row and column, respectively, and the remaining coefficients are determined by *two* different recursive relations. Let us define this more precisely as follows.

Received May 23, 2008.

O2009 The Korean Mathematical Society

²⁰⁰⁰ Mathematics Subject Classification. 11C20, 15A15, 15A36, 15A57.

Key words and phrases. determinant, LU-factorization, recurrence relation.

This research was in part supported by a grant from IPM (No. 84200039).

Definition. Let $\alpha = (\alpha_1, \alpha_2, ...)$ and $\beta = (\beta_1, \beta_2, ...)$ be two sequences starting with a common first term $\alpha_1 = \beta_1$ and k be a natural number. Define a matrix $A_{\alpha,\beta}^{(k,\pm)}(n)$ of order n with coefficients $a_{i,j}$ by setting $a_{i,1} = \beta_i$, $a_{1,i} = \alpha_i$ for $1 \le i \le n$ and

$$a_{i,j} = \begin{cases} a_{i-1,j-1} + a_{i-1,j} & \text{if } j \equiv 2, 3, 4, \dots, k+1 \pmod{2k} \\ a_{i-1,j-1} - a_{i-1,j} & \text{if } j \equiv k+2, \dots, 2k+1 \pmod{2k} \end{cases}$$

for $2 \leq i, j \leq n$. When k = 1, we put $A_{\alpha,\beta}^{\pm}(n) = A_{\alpha,\beta}^{(1,\pm)}(n)$.

332

In general, we are interested in the sequence of the determinants

$$(\det A_{\alpha,\beta}^{(k,\pm)}(1), \det A_{\alpha,\beta}^{(k,\pm)}(2), \dots, \det A_{\alpha,\beta}^{(k,\pm)}(n), \dots),$$

where α and β are certain sequences having a common first entry.

On the other hand, when we consider the constant sequence $\alpha = (1, 1, 1, ...)$, we notice that the generalized Pascal triangle $P_{\alpha,\alpha}(\infty)$ is, in fact, the classical Pascal triangle. Hence, in the early studies, we restrict our investigation to this sequence $\alpha = (1, 1, 1, ...)$ only, and we consider the principal minors of infinite matrices $A_{\alpha,\alpha}^{(k,\pm)}(\infty)$.

In this research, it has been tried to prove three theorems.

Theorem 1.1. The matrices $A_{\alpha,\alpha}^{\pm}(n)$ associated to the sequence $\alpha = (1, 1, ...)$ have the determinant $3^{\left[\frac{n-1}{2}\right]}$ for every natural number n. In other words, we have

$$\det A_{\alpha,\alpha}^{\pm}(n) = \begin{cases} 3^{l-1} & \text{if } n = 2l, \quad (l = 1, 2, \ldots) \\ 3^{l} & \text{if } n = 2l + 1. \quad (l = 0, 1, 2, \ldots) \end{cases}$$

Theorem 1.2. The sequence $(\det A_{\alpha,\alpha}^{(2,\pm)}(n))$ of determinants associated to the sequence $\alpha = (1, 1, 1, ...)$ satisfies the following

$$\det A_{\alpha,\alpha}^{(2,\pm)}(n) = \begin{cases} (-5)^{2l-1} & \text{if} \quad n = 4l, \quad (l = 1, 2, \ldots) \\ (-5)^{2l} & \text{if} \quad n = 4l + r. \ (r = 1, 2, 3; \ l = 0, 1, 2, \ldots) \end{cases}$$

Theorem 1.3. The sequence $(\det A_{\alpha,\alpha}^{(3,\pm)}(n))$ of determinants associated to the sequence $\alpha = (1, 1, 1, ...)$ satisfies the following

$$\det A_{\alpha,\alpha}^{(3,\pm)}(n) = \begin{cases} 11^{3l-1} & \text{if} \quad n = 6l, \quad (l = 1, 2, \ldots) \\ 11^{3l} & \text{if} \quad n = 6l+r, \ (r = 1, 2, 3, 4; \ l = 0, 1, 2, \ldots) \\ 11^{3l+1} & \text{if} \quad n = 6l+5. \ (l = 0, 1, 2, \ldots) \end{cases}$$

Here, we have the following conjecture:

Conjecture. Let k and n be natural numbers and n-1 = rk + s for some r, s with $r \ge 0$ and $0 \le s < k$. Let $\alpha = (1, 1, 1, ...)$. Then we have

$$\det A_{\alpha,\alpha}^{(k,\pm)}(n) = \begin{cases} \omega^{rk/2} & \text{if } r \text{ is even} \\ \\ \omega^{k(r-1)/2+s} & \text{if } r \text{ is odd,} \end{cases}$$

where $\omega = [1 - (-2)^{k+2}]/3$.

2. Main results

As we mentioned before, we should concentrate on the sequence of determinants

$$(\det A_{\alpha,\alpha}^{(k,\pm)}(1), \det A_{\alpha,\alpha}^{(k,\pm)}(2), \dots, \det A_{\alpha,\alpha}^{(k,\pm)}(n), \dots)$$

for certain k. Therefore, in order to start, we consider the case k = 1, and prove the following theorem.

Theorem 1. The matrices $A_{\alpha,\alpha}^{\pm}(n)$ associated to the sequence $\alpha = (1, 1, 1, ...)$ have the determinant $3^{\left[\frac{n-1}{2}\right]}$ for every natural number n.

Proof. We apply LU-factorization method (see [2]). We claim that

$$A^{\pm}_{\alpha,\alpha}(n) = L \cdot U_{\alpha}$$

where $L = A_{\beta,\alpha}^{\pm}(n)$ with $\beta = (1, 0, 0, 0, \ldots)$, and where

$$U = \left[\begin{array}{c} U_1 \\ U_2 \\ \vdots \\ U_n \end{array} \right],$$

with

$$U_{i} = \begin{cases} \underbrace{(1,1,1,\ldots,1)}_{n \text{ times}} & \text{ if } i = 1, \\ \underbrace{(0,0,\ldots,0,}_{i-1 \text{ times}},\underbrace{1,-1,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times }(2-\text{periodic})} & \text{ if } i \stackrel{2}{=} 0, \\ \underbrace{(0,0,\ldots,0,}_{i-1 \text{ times}},\underbrace{3,-1,3,-1,3,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times }(2-\text{periodic})} & \text{ if } i > 1 \text{ and } i \stackrel{2}{=} 1, \end{cases}$$

and $(u_{i,n-1}, u_{i,n})$ is satisfied in Table 1.

Table 1.						
$i \backslash n$	$n \stackrel{2}{\equiv} 0$	$n \stackrel{2}{\equiv} 1$				
$i \stackrel{2}{\equiv} 0$	(-1, 1)	(1, -1)				
$i \stackrel{2}{\equiv} 1$	(3, -1)	(-1, 3)				

The matrix L is a lower triangular matrix with 1's on the diagonal, whereas U is an upper triangular matrix with diagonal entries

$$\begin{array}{ll} 1 & \text{if } n = 1, \\ 1, 1 & \text{if } n = 2, \\ 1, \underbrace{1, 3, 1, 3, 1, 3, \dots, 1, 3}_{n-1 \text{ times } (2-\text{periodic})} & \text{if } n > 1 \text{ and } n \stackrel{2}{=} 1, \\ 1, \underbrace{1, 3, 1, 3, 1, 3, \dots, 3, 1}_{n-1 \text{ times } (2-\text{periodic})} & \text{if } n > 2 \text{ and } n \stackrel{2}{=} 0. \end{array}$$

Since det L = 1 and det $U = 3^{\left[\frac{n-1}{2}\right]}$, it is obvious that the claimed factorization of $A_{\alpha,\alpha}^{\pm}(n)$ immediately implies the validity of the theorem.

Suppose that

 $L=(l_{i,j})_{1\leq i,j\leq n}\quad \text{ and }\quad U=(u_{i,j})_{1\leq i,j\leq n}.$ Then by definition, we have $l_{1,1}=1,$ $l_{1,j}=0,$ $l_{i,1}=1$ for $2\leq i,j\leq n$ and

(1) $\int l_{i-1,j-1} + l_{i-1,j} \quad \text{if } j \stackrel{2}{=} 0$

(1)
$$l_{i,j} = \begin{cases} l_{i-1,j-1} + l_{i-1,j} & \text{if } j \equiv 0\\ l_{i-1,j-1} - l_{i-1,j} & \text{if } j \stackrel{2}{\equiv} 1 \end{cases}$$

for $2 \leq i, j \leq n$. Also we have

(2)
$$(u_{1,j}, u_{2,j}, \dots, u_{n,j})^T = \begin{cases} (1, 0, 0, \dots, 0)^T & j = 1, \\ (1, \underbrace{1, -1, 1, -1, \dots, -1, 1}_{j-1 \text{ times } (2-\text{periodic})}, \underbrace{0, \dots, 0}_{n-j})^T & j \stackrel{2}{=} 0, \\ (1, \underbrace{-1, 3, -1, 3, \dots, -1, 3}_{j-1 \text{ times } (2-\text{periodic})}, \underbrace{0, \dots, 0}_{n-j})^T & j \stackrel{2}{=} 1. \end{cases}$$

For the proof of the claimed factorization we compute the (i, j)-entry of $L \cdot U$, that is

$$(L \cdot U)_{i,j} = \sum_{k=1}^{n} l_{i,k} u_{k,j}.$$

It is easy to see that it is enough to show that $(L \cdot U)_{1,j} = 1, \, (L \cdot U)_{i,1} = 1$ for $1 \leq i,j \leq n$ and

$$(L \cdot U)_{i,j} = \begin{cases} (L \cdot U)_{i-1,j-1} + (L \cdot U)_{i-1,j} & j \stackrel{2}{\equiv} 0\\ (L \cdot U)_{i-1,j-1} - (L \cdot U)_{i-1,j} & j \stackrel{2}{\equiv} 1 \end{cases}$$

for $2 \leq i, j \leq n$, in order to prove the theorem.

Let us do the required calculations. First, suppose that i = 1. Then

(3)
$$(L \cdot U)_{1,j} = \sum_{k=1}^{n} l_{1,k} u_{k,j} = l_{1,1} u_{1,j} = 1.$$

Next, suppose that j = 1. In this case we obtain

(4)
$$(L \cdot U)_{i,1} = \sum_{k=1}^{n} l_{i,k} u_{k,1} = l_{i,1} u_{1,1} = 1$$

Finally, we assume that $2 \leq i, j \leq n$. We split the proof into two cases, according to the following possibilities for j.

Case 1. $j \stackrel{?}{\equiv} 0$. In this case we claim that

(5)
$$(L \cdot U)_{i,j} = (L \cdot U)_{i-1,j-1} + (L \cdot U)_{i-1,j}$$

Since $j - 1 \stackrel{2}{\equiv} 1$, by (2) we get

$$(L \cdot U)_{i-1,j-1} = \sum_{k=1}^{n} l_{i-1,k} u_{k,j-1} = 1 - \sum_{k=1}^{\frac{j-2}{2}} l_{i-1,2k} + 3 \sum_{k=1}^{\frac{j-2}{2}} l_{i-1,2k+1},$$

and since $j \stackrel{2}{\equiv} 0$ we obtain

$$(L \cdot U)_{i-1,j} = \sum_{k=1}^{n} l_{i-1,k} u_{k,j} = 1 + \sum_{k=1}^{\frac{j}{2}} l_{i-1,2k} - \sum_{k=1}^{\frac{j-2}{2}} l_{i-1,2k+1},$$

and ultimately

(6)
$$(L \cdot U)_{i-1,j-1} + (L \cdot U)_{i-1,j} = 2 + 2 \sum_{k=1}^{j-2} l_{i-1,2k+1} + l_{i-1,j}.$$

Again, since $j \stackrel{2}{\equiv} 0$ we obtain

$$(L \cdot U)_{i,j} = \sum_{k=1}^{n} l_{i,k} u_{k,j} = l_{i,1} + \sum_{k=1}^{\frac{2}{2}} l_{i,2k} - \sum_{k=1}^{\frac{j-2}{2}} l_{i,2k+1},$$

and by (1) we get

$$(L \cdot U)_{i,j} = l_{i,1} + \sum_{k=1}^{\frac{j}{2}} (l_{i-1,2k-1} + l_{i-1,2k}) - \sum_{k=1}^{\frac{j-2}{2}} (l_{i-1,2k} - l_{i-1,2k+1}),$$

and after some further simplification we obtain

(7)
$$(L \cdot U)_{i,j} = 2 + 2 \sum_{k=1}^{j-2} l_{i-1,2k+1} + l_{i-1,j}$$

Now, from (6) and (7) we obtain (5). Case 2. $j \stackrel{2}{\equiv} 1$. In this case we claim that

(8)
$$(L \cdot U)_{i,j} = (L \cdot U)_{i-1,j-1} - (L \cdot U)_{i-1,j}$$

Here, since $j - 1 \stackrel{2}{\equiv} 0$, by (2) we obtain

$$(L \cdot U)_{i-1,j-1} = \sum_{k=1}^{n} l_{i-1,k} u_{k,j-1} = 1 + \sum_{k=1}^{\frac{j-1}{2}} l_{i-1,2k} - \sum_{k=1}^{\frac{j-3}{2}} l_{i-1,2k+1}$$

and similarly we deduce that

$$(L \cdot U)_{i-1,j} = \sum_{k=1}^{n} l_{i-1,k} u_{k,j} = 1 - \sum_{k=1}^{\frac{j-1}{2}} l_{i-1,2k} + 3 \sum_{k=1}^{\frac{j-1}{2}} l_{i-1,2k+1},$$

because $j \stackrel{2}{\equiv} 1$. Therefore by an easy calculation we conclude that

(9)
$$(L \cdot U)_{i-1,j-1} - (L \cdot U)_{i-1,j} = 2 \sum_{k=1}^{\frac{j-1}{2}} l_{i-1,2k} - 4 \sum_{k=1}^{\frac{j-3}{2}} l_{i-1,2k+1} - 3l_{i-1,j}.$$

Again, since $j \stackrel{2}{\equiv} 1$ we have

$$(L \cdot U)_{i,j} = \sum_{k=1}^{n} l_{i,k} u_{k,j} = l_{i,1} - \sum_{k=1}^{\frac{j-1}{2}} l_{i,2k} + 3\sum_{k=1}^{\frac{j-1}{2}} l_{i,2k+1}.$$

Now, by (1) we obtain

$$(L \cdot U)_{i,j} = 1 - \sum_{k=1}^{\frac{j-1}{2}} (l_{i-1,2k-1} + l_{i-1,2k}) + 3 \sum_{k=1}^{\frac{j-1}{2}} (l_{i-1,2k} - l_{i-1,2k+1}),$$

and simply we can observe that

(10)
$$(L \cdot U)_{i,j} = 2 \sum_{k=1}^{j-1 - 1 - 2} l_{i-1,2k} - 4 \sum_{k=1}^{j-3 - 2} l_{i-1,2k+1} - 3 l_{i-1,j}.$$

Now, from (9) and (10) we obtain (8).

Therefore, from (3), (4), (5) and (8) we conclude the theorem.

Next, we focus on the sequence $(\det A_{\alpha,\alpha}^{(2,\pm)}(n))$ for $n \in \mathbb{N}$.

Theorem 2. The sequence $(\det A_{\alpha,\alpha}^{(2,\pm)}(n))$ of determinants associated to the sequence $\alpha = (1, 1, 1, ...)$ satisfies the following

$$\det A_{\alpha,\alpha}^{(2,\pm)}(n) = \begin{cases} (-5)^{2l-1} & if \quad n = 4l, \quad (l = 1, 2, \ldots) \\ (-5)^{2l} & if \quad n = 4l + r. \ (r = 1, 2, 3, \ l = 0, 1, 2, \ldots) \end{cases}$$

Proof. Again, we use the LU-factorization method. Here, we claim that

$$A^{(2,\pm)}_{\alpha,\alpha}(n) = L \cdot U,$$

where $L = A_{\beta,\alpha}^{(2,\pm)}(n)$ with $\beta = (1,0,0,\ldots)$ and where

$$U = \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_n \end{bmatrix},$$

with

$$\underbrace{(\underbrace{1,1,1,\ldots,1}_{n \text{ times}})}_{i = 1,}$$

$$\underbrace{(0,0,\ldots,0)}_{i-1 \text{ times}},\underbrace{-5,1,1,-1,-5,1,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times }(4-\text{periodic})} \qquad i \stackrel{4}{\equiv} 0,$$

$$U_{i} = \begin{cases} \underbrace{(0, 0, \dots, 0)}_{i-1 \text{ times}}, \underbrace{-5, 3, -1, -1, -5, 3, -1, -1, \dots, u_{i,n-1}, u_{i,n}}_{n-i+1 \text{ times} (4-\text{periodic})}, & i \stackrel{\text{d}}{=} 1, \\ \underbrace{(0, 0, \dots, 0, 1, 1, -1, -1, 1, 1, -1, -1, \dots, u_{i,n-1}, u_{i,n})}_{i}, & i \stackrel{\text{d}}{=} 2. \end{cases}$$

$$\underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{1,1,-1,1,1,1,-1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times} (4-\text{periodic})} = i = 2, \\ \underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{1,3,1,-1,1,3,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times} (4-\text{periodic})} = i = 3, \\ \underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{1,3,1,-1,1,3,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times} (4-\text{periodic})} = i = 3, \\ \underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{1,3,1,-1,1,3,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times} (4-\text{periodic})} = i = 3, \\ \underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{1,3,1,-1,1,3,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times} (4-\text{periodic})} = i = 3, \\ \underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{1,3,1,-1,1,3,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times} (4-\text{periodic})} = i = 3, \\ \underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{1,3,1,-1,1,3,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times} (4-\text{periodic})} = i = 3, \\ \underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{1,3,1,-1,1,3,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times} (4-\text{periodic})} = i = 3, \\ \underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{1,3,1,-1,1,3,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times} (4-\text{periodic})} = i = 3, \\ \underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{1,3,1,-1,1,3,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times} (4-\text{periodic})} = i = 3, \\ \underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{1,3,1,-1,1,1,3,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times} (4-\text{periodic})} = i = 3, \\ \underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{1,3,1,-1,1,1,3,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times} (4-\text{periodic})} = i = 3, \\ \underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{1,3,1,-1,1,1,3,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times} (4-\text{periodic})} = i = 3, \\ \underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{1,3,1,-1,1,1,3,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times} (4-\text{periodic})} = i = 3, \\ \underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times},u_{i,n-1},u_$$

and $(u_{i,n-1}, u_{i,n})$ is satisfied in Table 2.

Table 2.

$i \setminus n$	$n \stackrel{4}{\equiv} 0$	$n \stackrel{4}{\equiv} 1$	$n \stackrel{4}{\equiv} 2$	$n \stackrel{4}{\equiv} 3$
$i \stackrel{4}{\equiv} 0$	(-1, -5)	(-5,1)	(1, 1)	(1, -1)
$i \stackrel{4}{\equiv} 1$	(-1, -1)	(-1, -5)	(-5,3)	(3, -1)
$i \stackrel{4}{\equiv} 2$	(1, -1)	(-1, -1)	(-1, 1)	(1, 1)
$i \stackrel{4}{\equiv} 3$	(1, 3)	(3, 1)	(1, -1)	(-1, 1)

The matrix L is a lower triangular matrix with 1's on the diagonal, whereas U is an upper triangular matrix with diagonal entries

$$1, \underbrace{1, 1, -5, -5, 1, 1, \dots, u_{n-1,n-1}, u_{n,n}}_{4-\text{periodic}},$$

where

$$(u_{n-1,n-1}, u_{n,n}) = \begin{cases} (1, -5) & \text{if } n \stackrel{4}{=} 0, \\ (-5, -5) & \text{if } n \stackrel{4}{=} 1, \\ (-5, 1) & \text{if } n \stackrel{4}{=} 2, \\ (1, 1) & \text{if } n \stackrel{4}{=} 3. \end{cases}$$

Since $\det L = 1$ and

$$\det U = \begin{cases} (-5)^{2l-1} & \text{if } n = 4l, \quad (l = 1, 2, \ldots) \\ (-5)^{2l} & \text{if } n = 4l + r. \ (r = 1, 2, 3, \ l = 0, 1, 2, \ldots) \end{cases}$$

Again, it is immediately obvious that the claimed factorization of $A_{\alpha,\alpha}^{(2,\pm)}(n)$ implies the validity of the theorem.

Suppose that

 $L = (l_{i,j})_{1 \le i,j \le n}$ and $U = (u_{i,j})_{1 \le i,j \le n}$.

Then by definition, we have $l_{1,1} = 1$, $l_{1,j} = 0$, $l_{i,1} = 1$ for $2 \le i, j \le n$ and

(11)
$$l_{i,j} = \begin{cases} l_{i-1,j-1} + l_{i-1,j} & \text{if } j \stackrel{4}{=} 2, 3\\ l_{i-1,j-1} - l_{i-1,j} & \text{if } j \stackrel{4}{=} 0, 1 \end{cases}$$

for $2 \le i, j \le n$. Moreover, the *j*th column of *U* can be considered as follows: (12)

$$\begin{pmatrix} (1, \underbrace{1, -1, 1, 3, 1, -1, 1, 3, \dots, 3, 1}_{j-1 \text{ times } (4-\text{periodic})}, \underbrace{0, \dots, 0}_{n-j} \end{pmatrix}^T & j \stackrel{4}{\equiv} 2, \\ (1, \underbrace{1, 1, -1, -1, 1, 1, -1, -1, \dots, 1, 1}_{j-1 \text{ times } (4-\text{periodic})}, \underbrace{0, \dots, 0}_{n-j} \end{pmatrix}^T & j \stackrel{4}{\equiv} 3. \end{cases}$$

For the proof of the claimed factorization we need again some calculations. In fact, the (i,j)-entry of $L\cdot U$ is

$$(L \cdot U)_{i,j} = \sum_{k=1}^{n} l_{i,k} u_{k,j}.$$

It is easy to see that it is enough to show that $(L \cdot U)_{1,j} = 1$, $(L \cdot U)_{i,1} = 1$ for $1 \le i, j \le n$ and

$$(L \cdot U)_{i,j} = \begin{cases} (L \cdot U)_{i-1,j-1} + (L \cdot U)_{i-1,j} & j \stackrel{4}{\equiv} 2,3 \\ (L \cdot U)_{i-1,j-1} - (L \cdot U)_{i-1,j} & j \stackrel{4}{\equiv} 0,1 \end{cases}$$

for $2 \leq i, j \leq n$, in order to prove the theorem.

Again, we verify the claim by a direct calculation. First, suppose that i = 1. Then

(13)
$$(L \cdot U)_{1,j} = \sum_{k=1}^{n} l_{1,k} u_{k,j} = l_{1,1} u_{1,j} = 1.$$

Next, suppose that j = 1. In this case we obtain

(14)
$$(L \cdot U)_{i,1} = \sum_{k=1}^{n} l_{i,k} u_{k,1} = l_{i,1} u_{1,1} = 1.$$

Finally, we assume that $2 \leq i, j \leq n$. We split the proof into four cases, according to the following possibilities for j.

Case 1. $j \stackrel{4}{\equiv} 0$. In this case we claim that

(15)
$$(L \cdot U)_{i,j} = (L \cdot U)_{i-1,j-1} - (L \cdot U)_{i-1,j}.$$

Since $j - 1 \stackrel{4}{\equiv} 3$, we obtain

$$(L \cdot U)_{i-1,j-1} = l_{i-1,1} - \sum_{k=1}^{\frac{j-4}{4}} l_{i-1,4k} - \sum_{k=1}^{\frac{j-4}{4}} l_{i-1,4k+1} + \sum_{k=0}^{\frac{j-4}{4}} l_{i-1,4k+2} + \sum_{k=0}^{\frac{j-4}{4}} l_{i-1,4k+3},$$

and since $j \stackrel{4}{\equiv} 0$, it follows that

$$(L \cdot U)_{i-1,j} = l_{i-1,1} - 5 \sum_{k=1}^{\frac{j}{4}} l_{i-1,4k} - \sum_{k=1}^{\frac{j-4}{4}} l_{i-1,4k+1} - \sum_{k=0}^{\frac{j-4}{4}} l_{i-1,4k+2} + 3 \sum_{k=0}^{\frac{j-4}{4}} l_{i-1,4k+3}.$$

Consequently, we obtain (16)

$$(L \cdot U)_{i-1,j-1} - (L \cdot U)_{i-1,j} = 4 \sum_{k=1}^{\frac{j-4}{4}} l_{i-1,4k} + 2 \sum_{k=0}^{\frac{j-4}{4}} l_{i-1,4k+2} - 2 \sum_{k=0}^{\frac{j-4}{4}} l_{i-1,4k+3} - 5 l_{i-1,j}$$

On the other hand since $j \stackrel{4}{\equiv} 0$, we get

$$(L \cdot U)_{i,j} = l_{i,1} - 5\sum_{k=1}^{\frac{j}{4}} l_{i,4k} - \sum_{k=1}^{\frac{j-4}{4}} l_{i,4k+1} - \sum_{k=0}^{\frac{j-4}{4}} l_{i,4k+2} + 3\sum_{k=0}^{\frac{j-4}{4}} l_{i,4k+3}.$$

Now by (11) we deduce that

$$(L \cdot U)_{i,j} = 1 - 5 \sum_{k=1}^{\frac{j}{4}} (l_{i-1,4k-1} - l_{i-1,4k}) - \sum_{k=1}^{\frac{j-4}{4}} (l_{i-1,4k} - l_{i-1,4k+1}) \\ - \sum_{k=0}^{\frac{j-4}{4}} (l_{i-1,4k+1} + l_{i-1,4k+2}) + 3 \sum_{k=0}^{\frac{j-4}{4}} (l_{i-1,4k+2} + l_{i-1,4k+3})$$

and after some further simplifications the expression reduces to

(17)
$$(L \cdot U)_{i,j} = 4 \sum_{k=1}^{\frac{j-4}{4}} l_{i-1,4k} + 2 \sum_{k=0}^{\frac{j-4}{4}} l_{i-1,4k+2} - 2 \sum_{k=0}^{\frac{j-4}{4}} l_{i-1,4k+3} - 5 l_{i-1,j}$$

Now, from (16) and (17) we obtain (15).

Case 2. $j \stackrel{4}{\equiv} 1$. Here, we claim that

(18)
$$(L \cdot U)_{i,j} = (L \cdot U)_{i-1,j-1} - (L \cdot U)_{i-1,j}.$$

Since $j - 1 \stackrel{4}{\equiv} 0$, we obtain

$$(L \cdot U)_{i-1,j-1} = l_{i-1,1} - 5\sum_{k=1}^{\frac{j-1}{4}} l_{i-1,4k} - \sum_{k=1}^{\frac{j-5}{4}} l_{i-1,4k+1} - \sum_{k=0}^{\frac{j-5}{4}} l_{i-1,4k+2} + 3\sum_{k=0}^{\frac{j-5}{4}} l_{i-1,4k+3}.$$

Similarly, since $j \stackrel{4}{\equiv} 1$ it follows that

$$(L \cdot U)_{i-1,j} = l_{i-1,1} + \sum_{k=1}^{\frac{j-1}{4}} l_{i-1,4k} - 5 \sum_{k=1}^{\frac{j-1}{4}} l_{i-1,4k+1} - \sum_{k=0}^{\frac{j-5}{4}} l_{i-1,4k+2} - \sum_{k=0}^{\frac{j-5}{4}} l_{i-1,4k+3}.$$

Therefore, we have (19)

340

$$(L \cdot U)_{i-1,j-1} - (L \cdot U)_{i-1,j} = -6\sum_{k=1}^{\frac{j-4}{4}} l_{i-1,4k} + 4\sum_{k=1}^{\frac{j-5}{4}} l_{i-1,4k+1} + 4\sum_{k=0}^{\frac{j-5}{4}} l_{i-1,4k+3} - 5l_{i-1,j} + 2\sum_{k=0}^{\frac{j-5}{4}} l_{i-1,4k+3} - 5l_{i-1,4k+3} - 5l_{i-1,4k+3}$$

Furthermore, since $j \stackrel{4}{\equiv} 1$ we obtain

$$(L \cdot U)_{i,j} = l_{i,1} + \sum_{k=1}^{\frac{j-1}{4}} l_{i,4k} - 5 \sum_{k=1}^{\frac{j-1}{4}} l_{i,4k+1} - \sum_{k=0}^{\frac{j-5}{4}} l_{i,4k+2} + \sum_{k=0}^{\frac{j-5}{4}} l_{i,4k+3}.$$

Now we apply (11), to get

$$(L \cdot U)_{i,j} = 1 + \sum_{k=1}^{\frac{j-1}{4}} (l_{i-1,4k-1} - l_{i-1,4k}) - 5 \sum_{k=1}^{\frac{j-4}{4}} (l_{i-1,4k} - l_{i-1,4k+1}) - \sum_{k=0}^{\frac{j-5}{4}} (l_{i-1,4k+1} + l_{i-1,4k+2}) + \sum_{k=0}^{\frac{j-5}{4}} (l_{i-1,4k+2} + l_{i-1,4k+3}).$$

After some simplifications this leads to

$$(20) \quad (L \cdot U)_{i,j} = -6\sum_{k=1}^{\frac{j-4}{4}} l_{i-1,4k} + 4\sum_{k=1}^{\frac{j-5}{4}} l_{i-1,4k+1} + 4\sum_{k=0}^{\frac{j-5}{4}} l_{i-1,4k+3} - 5l_{i-1,j}.$$

Through comparing (19) and (20), we can get (18).

Case 3. $j \stackrel{4}{\equiv} 2$. In this case we claim that

(21)
$$(L \cdot U)_{i,j} = (L \cdot U)_{i-1,j-1} + (L \cdot U)_{i-1,j}.$$

Here since $j - 1 \stackrel{4}{\equiv} 1$, by (12) we obtain

$$(L \cdot U)_{i-1,j-1} = 1 + \sum_{k=1}^{\frac{j-2}{4}} l_{i-1,4k} - 5 \sum_{k=1}^{\frac{j-2}{4}} l_{i-1,4k+1} - \sum_{k=0}^{\frac{j-6}{4}} l_{i-1,4k+2} + \sum_{k=0}^{\frac{j-6}{4}} l_{i-1,4k+3},$$

and since $j \stackrel{4}{\equiv} 2$ it follows that

$$(L \cdot U)_{i-1,j} = 1 + \sum_{k=1}^{\frac{j-2}{4}} l_{i-1,4k} + 3\sum_{k=1}^{\frac{j-2}{4}} l_{i-1,4k+1} + \sum_{k=0}^{\frac{j-2}{4}} l_{i-1,4k+2} - \sum_{k=0}^{\frac{j-6}{4}} l_{i-1,4k+3}.$$

Therefore we have

$$(22) \ (L \cdot U)_{i-1,j-1} + (L \cdot U)_{i-1,j} = 2 + 2\sum_{k=1}^{\frac{j-2}{4}} l_{i-1,4k} - 2\sum_{k=1}^{\frac{j-2}{4}} l_{i-1,4k+1} + l_{i-1,j}.$$

On the other hand, since $j \stackrel{4}{\equiv} 2$ we deduce that

$$(L \cdot U)_{i,j} = 1 + \sum_{k=1}^{\frac{j-2}{4}} l_{i,4k} + 3\sum_{k=1}^{\frac{j-2}{4}} l_{i,4k+1} + \sum_{k=0}^{\frac{j-2}{4}} l_{i,4k+2} - \sum_{k=0}^{\frac{j-6}{4}} l_{i,4k+3},$$

and by (11) we conclude that

$$(L \cdot U)_{i,j} = 1 + \sum_{k=1}^{\frac{j-2}{4}} (l_{i-1,4k-1} - l_{i-1,4k}) + 3 \sum_{k=1}^{\frac{j-2}{4}} (l_{i-1,4k} - l_{i-1,4k+1}) + \sum_{k=0}^{\frac{j-2}{4}} (l_{i-1,4k+1} + l_{i-1,4k+2}) - \sum_{k=0}^{\frac{j-6}{4}} (l_{i-1,4k+2} + l_{i-1,4k+3}).$$

Now, an easy calculation shows that

(23)
$$(L \cdot U)_{i,j} = 2 + 2 \sum_{k=1}^{\frac{j-2}{4}} l_{i-1,4k} - 2 \sum_{k=1}^{\frac{j-2}{4}} l_{i-1,4k+1} + l_{i-1,j}.$$

By comparing (22) and (23), we may obtain (21). Case 4. $j \stackrel{4}{\equiv} 3$. In this case, we claim that

(24)
$$(L \cdot U)_{i,j} = (L \cdot U)_{i-1,j-1} + (L \cdot U)_{i-1,j}$$

Since $j - 1 \stackrel{4}{\equiv} 2$, we obtain

$$(L \cdot U)_{i-1,j-1} = 1 + \sum_{k=1}^{\frac{j-3}{4}} l_{i-1,4k} + 3\sum_{k=1}^{\frac{j-3}{4}} l_{i-1,4k+1} + \sum_{k=0}^{\frac{j-3}{4}} l_{i-1,4k+2} - \sum_{k=0}^{\frac{j-7}{4}} l_{i-1,4k+3}.$$

Similarly, since $j \stackrel{4}{\equiv} 3$ it follows that

$$(L \cdot U)_{i-1,j} = 1 - \sum_{k=1}^{\frac{j-3}{4}} l_{i-1,4k} - \sum_{k=1}^{\frac{j-3}{4}} l_{i-1,4k+1} - \sum_{k=0}^{\frac{j-3}{4}} l_{i-1,4k+2} + \sum_{k=0}^{\frac{j-3}{4}} l_{i-1,4k+3}.$$

Therefore, we have

$$(25) \ (L \cdot U)_{i-1,j-1} + (L \cdot U)_{i-1,j} = 2 + 2 \sum_{k=1}^{\frac{j-3}{4}} l_{i-1,4k+1} + 2 \sum_{k=0}^{\frac{j-3}{4}} l_{i-1,4k+2} + l_{i-1,j}.$$

On the other hand, since $j \stackrel{4}{\equiv} 2$ we obtain

$$(L \cdot U)_{i,j} = 1 - \sum_{k=1}^{\frac{j-3}{4}} l_{i,4k} - \sum_{k=1}^{\frac{j-3}{4}} l_{i,4k+1} + \sum_{k=0}^{\frac{j-3}{4}} l_{i,4k+2} - \sum_{k=0}^{\frac{j-3}{4}} l_{i,4k+3}.$$

Again by (11) we conclude that

$$(L \cdot U)_{i,j} = 1 - \sum_{k=1}^{\frac{j-3}{4}} (l_{i-1,4k-1} - l_{i-1,4k}) - \sum_{k=1}^{\frac{j-3}{4}} (l_{i-1,4k} - l_{i-1,4k+1}) + \sum_{k=0}^{\frac{j-3}{4}} (l_{i-1,4k+2} + l_{i-1,4k+2}) + \sum_{k=0}^{\frac{j-3}{4}} (l_{i-1,4k+2} + l_{i-1,4k+3}),$$

and we easily deduce that

(26)
$$(L \cdot U)_{i,j} = 2 + 2 \sum_{k=1}^{\frac{j-3}{4}} l_{i-1,4k+1} + 2 \sum_{k=0}^{\frac{j-3}{4}} l_{i-1,4k+2} + l_{i-1,j}.$$

By comparing (25) and (26), we can get (24).

Therefore, from (13), (14), (15), (18), (21) and (24) we conclude the theorem. \Box

In the end, we consider the sequence $(\det A^{(3,\pm)}_{\alpha,\alpha}(n))$ for $n \in \mathbb{N}$.

Theorem 3. The sequence $(\det A^{(3,\pm)}_{\alpha,\alpha}(n))$ of determinants associated to the sequence $\alpha = (1, 1, 1, ...)$ satisfies the following

$$\det A_{\alpha,\alpha}^{(3,\pm)}(n) = \begin{cases} 11^{3l-1} & \text{if} \quad n = 6l, \quad (l = 1, 2, \ldots) \\ 11^{3l} & \text{if} \quad n = 6l+r, \ (r = 1, 2, 3, 4, \ l = 0, 1, 2, \ldots) \\ 11^{3l+1} & \text{if} \quad n = 6l+5. \ (l = 0, 1, 2, \ldots) \end{cases}$$

Proof. The proof is similar to the proof of Theorem 1.1 and Theorem 1.2, and we avoid presenting some of the details. Again, we apply LU-factorization. Here, we claim that

$$A^{(3,\pm)}_{\alpha,\alpha}(n) = L \cdot U,$$

where $L = A_{\beta,\alpha}^{(3,\pm)}(n)$ with $\beta = (1,0,0,\ldots)$ is a lower triangular matrix with 1's on the diagonal, and where

$$U = \begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_n \end{bmatrix},$$

with

$$\underbrace{1, \dots, 1}_{n \text{ times}}$$
 $i = 1,$

$$i = 1,$$

$$\underbrace{(1,1,1,\ldots,1)}_{n \text{ times}}, \underbrace{11,-7,1,1,-1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times } (6-\text{periodic})}, \quad i \stackrel{6}{=} 0,$$

$$\underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{11,-5,3,-1,-1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times }(6-\text{periodic})}) \quad i \stackrel{6}{\equiv} 1,$$

$$U_{i} = \begin{cases} \underbrace{(0, 0, \dots, 0)}_{i-1 \text{ times}}, \underbrace{1, 1, 1, -1, -1, \dots, u_{i,n-1}, u_{i,n}}_{n-i+1 \text{ times } (6-\text{periodic})} & i \stackrel{6}{\equiv} 2, \end{cases}$$

$$\underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{1,1,3,1,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times }(6-\text{periodic})}) \quad i \stackrel{6}{\equiv} 3,$$

$$\underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{1,-5,1,-1,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times }(6-\text{periodic})}) \quad i \stackrel{6}{\equiv} 4,$$

$$\underbrace{(\underbrace{0,0,\ldots,0}_{i-1 \text{ times}},\underbrace{11,-7,3,-1,1,-1,\ldots,u_{i,n-1},u_{i,n}}_{n-i+1 \text{ times }(6-\text{periodic})}) \quad i \stackrel{6}{\equiv} 5,$$

and $(u_{i,n-1}, u_{i,n})$ is satisfied in Table 3.

Table 3.

$i \backslash n$	$n \stackrel{6}{\equiv} 0$	$n \stackrel{6}{\equiv} 1$	$n \stackrel{6}{\equiv} 2$	$n \stackrel{6}{\equiv} 3$	$n \stackrel{6}{\equiv} 4$	$n \stackrel{6}{\equiv} 5$
$i \stackrel{6}{\equiv} 0$	(-1, 11)	(11, -7)	(-7,1)	(1, 1)	(1, -1)	(-1, -1)
$i \stackrel{6}{\equiv} 1$	(-1, -1)	(-1, 11)	(11, -5)	(-5,3)	(3, -1)	(-1, -1)
$i \stackrel{6}{\equiv} 2$	(-1, -1)	(-1, -1)	(-1,1)	(1, 1)	(1, 1)	(1, -1)
$i \stackrel{6}{\equiv} 3$	(3,1)	(1,1)	(1, -1)	(-1, 1)	(1, 1)	(1, 3)
$i \stackrel{6}{\equiv} 4$	(-5,1)	(1, -1)	(-1,1)	(1, -1)	(-1,1)	(1,5)
$i \stackrel{6}{\equiv} 5$	(11, -7)	(-7,3)	(3, -1)	(-1, 1)	(1, -1)	(-1, 11)

The matrix \boldsymbol{U} is an upper triangular one with diagonal entries

$$1, \underbrace{1, 1, 1, 11, 11, 11, \dots, u_{n-1,n-1}, u_{n,n}}_{6-\text{periodic}},$$

where

$$(u_{n-1,n-1}, u_{n,n}) = \begin{cases} (11, 11) & \text{if } n \stackrel{6}{=} 0 \text{ or } 1, \\ (11, 1) & \text{if } n \stackrel{6}{=} 2, \\ (1, 1) & \text{if } n \stackrel{6}{=} 3 \text{ or } 4, \\ (1, 11) & \text{if } n \stackrel{6}{=} 5. \end{cases}$$

Since $\det L = 1$ and

344

$$\det U = \begin{cases} 11^{3l-1} & \text{if} \quad n = 6l, \quad (l = 1, 2, \ldots) \\ 11^{3l} & \text{if} \quad n = 6l + r, \ (r = 1, 2, 3, 4, \ l = 0, 1, 2, \ldots) \\ 11^{3l+1} & \text{if} \quad n = 6l + 5, \ (l = 0, 1, 2, \ldots) \end{cases}$$

it is obvious that the claimed factorization of $A_{\alpha,\alpha}^{(3,\pm)}(n)$ implies the validity of the theorem.

Let us do the required calculation. Again, we assume that

 $L = (l_{i,j})_{1 \le i,j \le n}$ and $U = (u_{i,j})_{1 \le i,j \le n}$.

Then by definition, we have $l_{1,1} = 1$, $l_{1,j} = 0$, $l_{i,1} = 1$ for $2 \le i, j \le n$ and the entries $l_{i,j}$ for $2 \le i, j \le n$ satisfy

(27)
$$l_{i,j} = \begin{cases} l_{i-1,j-1} + l_{i-1,j} & \text{if } j \stackrel{4}{=} 2, 3, 4\\ l_{i-1,j-1} - l_{i-1,j} & \text{if } j \stackrel{4}{=} 5, 0, 1 \end{cases}$$

Moreover, the jth column of U can be considered as follows. (28)

$$(u_{1,j},\ldots,u_{n,j})^{T} = \begin{cases} (1,0,0,\ldots,0)^{T} & j = 1, \\ (1,\underbrace{-1,1,1,-7,11,-1,\ldots,-7,11}_{j-1 \text{ times } (6-\text{periodic)}},\underbrace{0,\ldots,0}_{n-j})^{T} & j \stackrel{6}{=} 0, \\ (1,\underbrace{-1,1,-1,3,-7,11,\ldots,-7,11}_{j-1 \text{ times } (6-\text{periodic)}},\underbrace{0,\ldots,0}_{n-j})^{T} & j \stackrel{6}{=} 1, \\ (1,\underbrace{1,-1,1,-1,1,-5,\ldots,-5,1}_{j-1 \text{ times } (6-\text{periodic)}},\underbrace{0,\ldots,0}_{n-j})^{T} & j \stackrel{6}{=} 2, \\ (1,\underbrace{1,1,-1,1,1,3,\ldots,3,1,1}_{j-1 \text{ times } (6-\text{periodic)}},\underbrace{0,\ldots,0}_{n-j})^{T} & j \stackrel{6}{=} 3, \\ (1,\underbrace{1,1,1,-1,-1,1,1,3,\ldots,3,1,1}_{j-1 \text{ times } (6-\text{periodic)}},\underbrace{0,\ldots,0}_{n-j})^{T} & j \stackrel{6}{=} 4, \\ (1,\underbrace{-1,3,-5,11,-1,-1,\ldots,-5,11}_{j-1 \text{ times } (6-\text{periodic)}},\underbrace{0,\ldots,0}_{n-j})^{T} & j \stackrel{6}{=} 5. \end{cases}$$

In order to prove the claim we show that the (i, j)-entry of $L \cdot U$, that is

$$(L \cdot U)_{i,j} = \sum_{k=1}^{n} l_{i,k} u_{k,j},$$

satisfy $(L \cdot U)_{1,j} = 1$, $(L \cdot U)_{i,1} = 1$ for $1 \le i, j \le n$ and

(29)
$$(L \cdot U)_{i,j} = \begin{cases} (L \cdot U)_{i-1,j-1} + (L \cdot U)_{i-1,j} & j \stackrel{6}{\equiv} 2, 3, 4 \\ (L \cdot U)_{i-1,j-1} - (L \cdot U)_{i-1,j} & j \stackrel{6}{\equiv} 5, 0, 1 \end{cases}$$

for $2 \leq i, j \leq n$.

First assume that i = 1. Then, in accordance with the definition of $l_{1,j}$, we obtain

$$(L \cdot U)_{1,j} = \sum_{k=1}^{n} l_{1,k} u_{k,j} = l_{1,1} u_{1,j} = 1.$$

Next, suppose that j = 1. In this case by (28) we obtain

$$(L \cdot U)_{i,1} = \sum_{k=1}^{n} l_{i,k} u_{k,1} = l_{i,1} u_{1,1} = 1.$$

Finally, we assume that $2 \leq i, j \leq n$. In this case we must show that the entries $(L \cdot U)_{i,j}$ satisfy (29). Here, there are six cases to distinguish, according to $j \stackrel{6}{=} 0, 1, 2, 3, 4$ or 5. Using similar arguments to those in the proof of Theorem 1.2, we see that the result is true in any cases. For instance, we assume that $j \stackrel{6}{=} 4$. In this case, we must establish that

(30)
$$(L \cdot U)_{i,j} = (L \cdot U)_{i-1,j-1} + (L \cdot U)_{i-1,j}.$$

Since $j \stackrel{6}{\equiv} 4$, in according with (28) , the right hand of (30) is equal to

(31)
$$2 + 2\sum_{k=1}^{\frac{j-4}{6}} l_{i-1,6k+1} + 2\sum_{k=0}^{\frac{j-4}{6}} l_{i-1,6k+2} + 2\sum_{k=0}^{\frac{j-4}{6}} l_{i-1,6k+3} + l_{i-1,j}.$$

Again, since $j \stackrel{4}{\equiv} 2$ by (24), we see that the left-hand of (30) is equal to

$$(32) \quad 1 - \sum_{k=1}^{\frac{j-4}{6}} l_{i,6k} - \sum_{k=1}^{\frac{j-4}{6}} l_{i,6k+1} + \sum_{k=0}^{\frac{j-4}{6}} l_{i,6k+2} + \sum_{k=0}^{\frac{j-4}{6}} l_{i,6k+3} + \sum_{k=0}^{\frac{j-4}{6}} l_{i,6k+4} - \sum_{k=0}^{\frac{j-10}{6}} l_{i,6k+5}.$$

Now, if we substitute the corresponding value for $l_{i,6k+r}$ $(0 \le r \le 5)$ from (29), we can conclude

$$(L \cdot U)_{i,j} = 2 + 2\sum_{k=1}^{\frac{j-4}{6}} l_{i-1,6k+1} + 2\sum_{k=0}^{\frac{j-4}{6}} l_{i-1,6k+2} + 2\sum_{k=0}^{\frac{j-4}{6}} l_{i-1,6k+3} + l_{i-1,j}$$

which results in (30). In this way the proof is completed.

References

- R. Bacher, Determinants of matrices related to the Pascal triangle, J. Theor. Nombres Bordeaux 14 (2002), no. 1, 19–41.
- [2] C. Krattenthaler, Advanced determinant calculus, Sem. Lothar. Combin. 42 (1999), Art. B42q, 67 pp.
- [3] _____, Evaluations of some determinants of matrices related to the Pascal triangle, Sem. Lothar. Combin. 47 (2001/02), Art. B47g, 19 pp.

ALI REZA MOGHADDAMFAR DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE K. N. TOOSI UNIVERSITY OF TECHNOLOGY P. O. BOX 16315-1618, TEHRAN, IRAN AND SCHOOL OF MATHEMATICS INSTITUTE FOR STUDIES IN THEORETICAL PHYSICS AND MATHEMATICS (IPM) P. O. BOX 19395-5746, THERAN, IRAN *E-mail address:* moghadam@kntu.ac.ir and moghadam@mail.ipm.ir

Seyyed Navid Salehy Department of Mathematics Faculty of Science K. N. Toosi University of Technology P. O. Box 16315-1618, Tehran, Iran

SEYYED NIMA SALEHY DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE K. N. TOOSI UNIVERSITY OF TECHNOLOGY P. O. BOX 16315-1618, TEHRAN, IRAN