• Title/Summary/Keyword: K-linearization

Search Result 524, Processing Time 0.024 seconds

A Second Order Sliding Mode Control of Container Cranes with Unknown Payloads and Sway Rates (미지의 부하와 흔들림 각속도를 갖는 컨테이너 크레인의 2차 슬라이딩 모드 제어)

  • Baek, Woon-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.145-149
    • /
    • 2015
  • This paper introduces a sway suppression control for container cranes with unknown payloads and sway rates. With no priori knowledge concerning the magnitude of payload mass and sway rate, the proposed control maintains superior sway suppressing and trolley positioning against external disturbances. The proposed scheme combines a second order sliding mode control and an adaptive control to cope with unknown payloads. A second order sliding mode control without feedback of the sway rate is first designed, which is based on a class of feedback linearization methods for stabilization of the under-actuated sway dynamics of the container. Under applicable restrictions of the magnitude of payload inertia and sway rate, a linear regression model is obtained, and an adaptive control with a payload estimator is then designed, which is based on Lyapunov stability methods for the fast attenuation of trolley oscillations in the vicinity of the target position. The asymptotic stability of the overall closed-loop system is assured irrespective of variations of rope length. Simulation are shown in the existence of initial sway and external wind disturbances.

Linearization Technique for Bang-Bang Digital Phase Locked-Loop by Optimal Loop Gain Control (최적 루프 이득 제어에 의한 광대역 뱅뱅 디지털 위상 동기 루프 선형화 기법)

  • Hong, Jong-Phil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.90-96
    • /
    • 2014
  • This paper presents a practical linearization technique for a wide-band bang-bang digital phase locked-loop(BBDPLL) by selecting optimal loop gains. In this paper, limitation of the theoretical design method for BBDPLL is explained, and introduced how to implement practical BBDPLLs with CMOS process. In the proposed BBDPLL, the limited cycle noise is removed by reducing the proportional gain while increasing the integer array and dither gain. Comparing to the conventional BBDPLL, the proposed one shows a small area, low power, linear characteristic. Moreover, the proposed design technique can control a loop bandwidth of the BBDPLL. Performance of the proposed BBDPLL is verified using CppSim simulator.

Application of Nonlinear Feedback Control to an Articulated Manipulator (수직다관절 매니퓰레이터에 대한 비선형 되먹임제어의 응용)

  • Y.S. Baek;C.I. Yang;H.S. Aum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.104-114
    • /
    • 1995
  • Mathematical models of industrial robots or manipulators are composed of highly nonlinear equations with nonlinear couplings between the variables of motions. These nonlin- earities were not considered important in the first stage that the working speed of the manipulator was not so fast, but the effect of nonlinear forces has become serious, as the working speed has been increased. So more improvement of performance cannot be expected by the control of manipulator using approximate linearization. As an approach for solving these problems, there is a method that eliminates nonlinear theory, which makes possible cecoupling of coupling terms and arbitrary arranging of poles is briefly introduced in this study. When the theory is applied to design the control law, its feasibility is examined whether the reasonable control results are obtained by simulating position, velocity, torque and tracing trajectory. The relations between the coefficients of the linearized differential equations and the maximum error and torque for the prescribed trajectory are also examined. Finally, the method for selecting the values for getting the most rapid and precise response within maximum torque of each drive is suggested in the choice of coefficients of characteristic equations which are obtained as a result of the control.

  • PDF

Gain Scheduling Controller Design and Performance Evaluation for Thrust Control of Variable Thrust Solid Rocket Motor (가변 추력 고체추진기관의 추력 제어를 위한 이득 계획 제어기 설계 및 성능 분석)

  • Hong, SeokHyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.28-36
    • /
    • 2016
  • Theoretical model of a variable thrust solid rocket motor with a pintle nozzle was derived. For the chamber pressure control, classical model linearization and proportional-intergral controller was used. And then two types of gain scheduling controller were suggested to imporve controller performance for the non-linear propulsion model. Considering characteristics of systems, control gains were scheduled by chamber pressure or free volume. Step responses of each controllers were compared. As a result, the proper control algorithm about characteristics of variable thrust rocket motor was suggested.

Investigation of effectiveness of double concave friction pendulum bearings

  • Ates, Sevket
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.195-213
    • /
    • 2012
  • This paper presents the investigation of the stochastic responses of seismically isolated bridges subjected to spatially varying earthquake ground motions including incoherence, wave-passage and site-response effects. The incoherence effect is examined by considering Harichandran and Vanmarcke coherency model. The effect of the wave-passage is dealt with various wave velocities in the response analysis. Homogeneous firm, medium and soft soil conditions are selected for considering the site-response effect where the bridge supports are constructed. The ground motion is described by filtered white noise and applied to each support points. For seismic isolation of the bridge, single and double concave friction pendulum bearings are used. Due to presence of friction on the concave surfaces of the isolation systems, the equation of motion of is non-linear. The non-linear equation of motion is solved by using equivalent linearization technique of non-linear stochastic analyses. Solutions obtained from the stochastic analyses of non-isolated and isolated bridges to spatially varying earthquake ground motions compared with each other for the special cases of the ground motion model. It is concluded that friction pendulum systems having single and double concave surfaces have important effects on the stochastic responses of bridges to spatially varying earthquake ground motions.

Experiments on Robust Nonlinear Control for Brush Contact Force Estimation (연마 브러시 접촉력 산출을 위한 비선형 강건제어기 실험)

  • Lee, Byoung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.41-49
    • /
    • 2010
  • Two promising control candidates have been selected to test the sinusoidal reference tracking performance for a brush-type polishing machine having strong nonlinearities and disturbances. The controlled target system is an oscillating mechanism consisting of a common positioning stage of one degree-of-freedom with a screw and a ball nut driven by a servo motor those can be obtained commercially. Beside the strong nonlinearity such as stick-slip friction, the periodic contact of the polishing brush and the work piece adds an external disturbance. Selected control candidates are a Sliding Mode Control (SMC) and a variant of a feedback linearization control called Smooth Robust Nonlinear Control (SRNC). A SMC and SRNC are selected since they have good theoretical backgrounds, are suitable to be implemented in a digital environment and show good disturbance and modeling uncertainty rejection performance. It should be also noted that SRNC has a nobel approach in that it uses the position information to compensate the stickslip friction. For both controllers analytical and experimental studies have been conducted to show control design approaches and to compare the performance against the strong nonlinearity and the disturbances.

GALOIS THEORY OF MATHIEU GROUPS IN CHARACTERISTIC TWO

  • Yie, Ik-Kwon
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.199-210
    • /
    • 2007
  • Given a field K and a finite group G, it is a very interesting problem, although very difficult, to find all Galois extensions over K whose Galois group is isomorphic to G. In this paper, we prepare a theoretical background to study this type of problem when G is the Mathieu group $M_{24}$ and K is a field of characteristic two.

Nonparametric Estimation of Renewal Function

  • Jeong, Hai-Sung;Kim, Jee-Hoon;Na, Myoung-Hwan
    • Journal of Korean Society for Quality Management
    • /
    • v.25 no.4
    • /
    • pp.99-105
    • /
    • 1997
  • We consider a nonparametric estimation of the renewal function. In this paper, we suggest modified methods for Frees's estimator to enhance the efficiency. The methods are based on a piecewise linearization and on the fact that the bounded monotonic functions converging pointwise to the bounded monotonic continuous function converge uniformly. In a simulation study, we show that the modified methods have the better efficiency than that introduced by Frees.

  • PDF

The Fuzzy Control of Travelling Pendulum using MATRIXx (MATRIXx를 이용한 퍼지제어의 주행형 진자진동에의 적용)

  • Song, Seong-Yong;Lee, Hyun-Cheol;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.863-865
    • /
    • 1995
  • The studies about the swing control of the travelling pendulum have been developed in many ways. Most of them deal with the linearized pendulum model. This paper shows that the pendulum can be modelled without linearization by using MATRIXx, the dynamics simulation software. The fuzzy controller for reducing swing of the travelling pendulum is implemented with fuzzy tools supplied by MATRIXx.

  • PDF