• Title/Summary/Keyword: K-let

Search Result 2,363, Processing Time 0.034 seconds

SPLIT MAP AND IDEMPOTENT SEPARATING CONGRUENCE

  • CHANDRASEKARAN V. M.;LOGANATHAN M.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.351-360
    • /
    • 2005
  • Let T be a regular semigroup and let S be a regular subsemigroup of T. In this paper we study the relationship between the idempotent separating congruence on S and the idempotent separating congruence on T, when T and S are connected by a splitmap ${\theta} : T {\to} S$.

EXISTENCE OF FUZZY IDEALS WITH ADDITIONAL CONDITIONS IN BCK/BCI-ALGEBRAS

  • Jun, Young-Bae;Park, Chul-Hwan
    • The Pure and Applied Mathematics
    • /
    • v.14 no.3
    • /
    • pp.223-230
    • /
    • 2007
  • We give an answer to the following question: Question. Let S be a subset of [0,1] containing a maximal element m > 0 and let C :=$\{I_{t}\;{\mid}\;t{\in}S\}$ be a decreasing chain of ideals of a BCK/BCI-algebra X. Then does there exists a fuzzy ideal ${\mu}(X)=S\;and\;C_{\mu}=C?$.

  • PDF

On Graded Quasi-Prime Submodules

  • AL-ZOUBI, KHALDOUN;ABU-DAWWAS, RASHID
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.259-266
    • /
    • 2015
  • Let G be a group with identity e. Let R be a G-graded commutative ring and M a graded R-module. In this paper, we introduce the concept of graded quasi-prime submodules and give some basic results about graded quasi-prime submodules of graded modules. Special attention has been paid, when graded modules are graded multiplication, to find extra properties of these submodules. Furthermore, a topology related to graded quasi-prime submodules is introduced.

HARMONIC MAPS BETWEEN THE GROUP OF AUTOMORPHISMS OF THE QUATERNION ALGEBRA

  • Kim, Pu-Young;Park, Joon-Sik;Pyo, Yong-Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.331-339
    • /
    • 2012
  • In this paper, let Q be the real quaternion algebra which consists of all quaternionic numbers, and let G be the Lie group of all automorphisms of the algebra Q. Assume that g is an arbitrary given left invariant Riemannian metric on the Lie group G. Then, we obtain a necessary and sufficient condition for an automorphism of the group G to be harmonic.

THE NIELSEN NUMBER ON ASPHERICAL WEDGE

  • Kim, Seung Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.4
    • /
    • pp.533-541
    • /
    • 2008
  • Let X be a finite polyhedron that is of the homotopy type of the wedge of the torus and the surface with boundary. Let $f:X{\rightarrow}X$ be a self-map of X. In this paper, we prove that if the induced endomorphism of ${\pi}_1(X)$ is K-reduced, then there is an algorithm for computing the Nielsen number N(f).

  • PDF

MINIMAL PROJECTIVE RESOLUTIONS OF A FINITELY GENERATED MODULE M OVER A NOETHERIAN LOCAL RING (R, 𝔪) AND THE COHOMOLOGIES OF (M, R/𝔪)

  • Lee, Sang Cheol;Song, Yeong Moo
    • Honam Mathematical Journal
    • /
    • v.40 no.2
    • /
    • pp.355-366
    • /
    • 2018
  • Let R be a commutative ring with identity and let M be a finitely generated module over a Noetherian local ring R. Then it is well-known that M has a minimal projective resolution, which is unique up to isomorphisms of exact sequences. We provide a new proof of its uniqueness. Moreover, we deal with the cohomologies of (M, R/m).

FACTORIZATION IN KREIN SPACES

  • Yang, Mee-Hyea
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.4
    • /
    • pp.801-810
    • /
    • 1998
  • Let A(z), W(z) and C(z) be power series with operator coefficients such that W(z) = A(z)C(z). Let D(A) and D(C) be the state spaces of unitary linear systems whose transfer functions are A(z) and C(z) respectively. Then there exists a Krein space D which is the state space of unitary linear system with transfer function W(z). And the element of D is of the form (f(z) + A(z)h(z), k(z) + C*(z)g(z)) where (f(z),g(z)) is in D(A) and (h(z),k(z)) is in D(C).

  • PDF

ON GENERALIZED (α, β)-DERIVATIONS AND COMMUTATIVITY IN PRIME RINGS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.101-106
    • /
    • 2006
  • Let R be a prime ring and I a nonzero ideal of R. Let $\alpha,\;\nu,\;\tau\;R{\rightarrow}R$ be the endomorphisms and $\beta,\;\mu\;R{\rightarrow}R$ the automorphisms. If R admits a generalized $(\alpha,\;\beta)-derivation$ g associated with a nonzero $(\alpha,\;\beta)-derivation\;\delta$ such that $g([\mu(x),y])\;=\;[\nu/(x),y]\alpha,\;\tau$ for all x, y ${\in}I$, then R is commutative.

IMPROVED UPPER BOUNDS OF PROBABILITY

  • Lee, Min-Young;Jo, Moon-Shik
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.725-736
    • /
    • 2003
  • Let $A_1,{\;}A_2,...,A_n$ be a sequence of events on a given probability space. Let $m_n$ be the number of those $A'_{j}s$ which occur. Upper bounds of P($m_n{\;}\geq{\;}1) are obtained by means of probability of consecutive terms which reduce the number of terms in binomial moments $S_2,n,S_3,n$ and $S_4,n$.