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IMPROVED UPPER BOUNDS OF PROBABILITY
MIN-YoUNG LEE AND MOON-SHIK JO

ABSTRACT. Let A;, Ag, -, An be a sequence of events on a given
probability space. Let my be the number of those A;s which occur.
Upper bounds of P(m, > 1) are obtained by means of probability
of consecutive terms which reduce the number of terms in binomial
moments S2 ,,53,» and San.

1. Introduction

Several problems of probability theory lead to the need of estimating
the distribution of the number m,, = m,,(A) of occurrences in a sequence
Aj, As,- -+, Ap of events. When the estimation of this distribution is in
terms of linear combinations of the binomial moments of m,(A4), we
speak of Bonferroni-type inequality. That is, let

(1.1) Sk = EK”Z")] 0<k<n.

Then, with constants cg ,(r) and di ,(r), 0 < k < n, r <0, the inequal-
ities

(1.2) > dkn(r)Skm < P(mn(A) =7) < ckn(r)Skn
k=0

are called Bonferroni-type inequality. Here the term constant means
that ¢z, (r) and dg . (r) do not depend on the underlying probability
space and nor on the choice of the events A1, Az, -+ , A,.
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By turning to indicator variables we immediately get that, for 1 <
k <n,

(13) Sk,'n = ZP(AH nAiz M. nA’ik)?

where the summation is over all subscripts satisfying 1 <i; <is < -+ <
ik S n.
Kounias [4] has proved that

(1.4) P(U,A;) < zn: P(A;) —max Y P(A; N A;)
i=1 Ry

which improves on the simple Bonferroni upper bound of > P(4;). Mar-
golin and Maurer [7] generalize this result by using more than just
> P(A;) from the classical estimates. Hunter [3], whose result is re-
obtained in the paper of Worsley [9], presents an improved upper bound
which is constructed by edges on a graph.

Lee (6] has proved that

n—2
(1.5) P(mn > 1) < Sl,n—‘ Z P(AiﬂAj)-i-Z P(AinAi+1ﬂAi+2).
i<j<it2 i=1

Taking averages which over i = 1,2,--- ,n of (1.5), we get the follow-
ing Bonferroni-type inequality.
(2n —3) (n—2)
(2) (3)
This inequality is known that it is the best possible upper bound in

terms of S;,S2 and S5 (see Kwerel [3]).
The classical lower bound of degree four is

P(m, >1) <8, — Sy + Sa.

Sl,n - S2,n + SB,n - S4,n S P(mn 2 1)

and our idea is to reduce the number of terms in S3 ,,, S3,, and S4,, in
order to get an upper bound. For a related idea, see the graph-dependent
models of Renyi [8] and Galambos [2].

In this direction, we obtain the inequalities of the theorems that fol-
low.
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2. The results

The upper bounds are improved by the following results.

THEOREM 1. For positive integers n > 4,

P(m, >1)
n—2
<Sin— Y. PANA)+Y P(AiN AN Aigs)
i<j<i+3 i=1
(2.1) 3
+ D [P(AiN Aip1 N Aigs) + P(A; N Aia N Aiys)]
i=1
n—3
= > P(A; N Aig1 N Airz N Aigs).
i=1
Taking the averages of the above upper bound over ¢ = 1,2,--- ,n,

we get Theorem 2.
THEOREM 2. For positive integers n > 4,

3(n—2) 3n—8 n—3

B G IR (e

(22)  Pm,21)< 8-

3. Proofs

Proor or THEOREM 1. We use the method of indicators. That
is, let I(A;; NA;, N---NA;) belif A;, NA;, N---N A;, occurs or 0
otherwise.

Then I(Azl ﬂAi2 M- ﬂAzk) = I(Azl)I(Azz) s I(Azk) and .EI[I(/lzl N
A, N---NA,) =P(A;; NA;, N---N A, ). Furthermore, the indicator
variable I(m, > 1) is 1 if m,, > 1 and 0 if m, = 0. Note also that
Yoo I(A;) = my and Sy, = Emy].

We thus have to prove

n—2

M= > T(A)I(A}) + D I(A)I(Ais1)I(Airz)

1<j<i+3 i=1
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+Z[I I (Aip1)I(Aivs) + T(A)I(Air2)I(Airs)]
(3.1)

- ZI A1) I (Aip2)I(Aiys) > 1

if mp, > 1 and the left hand side of (3.1) is greater than zero or equal to
zero if m,, = 0.

The latter case is evident, having zero on both sides. Also, if m,, =1,
both side of (3.1) equal 1 and if m, = 2, left hand side of (3.1) is

0
_ > 1.
2 (1) >1
Hence, for the sequel we may assume m, > 3.
Next, we place the events Aj, Ag,--+ , A, at every sample point into

blocks which consist of events of the kind Aj4; N--- N Ajig; ,which is
a full block if neither A; nor Aj ;1 occurs. Assume that in this way,
at a given sample point, we have ¢ blocks. We distinguish six cases.

case (i): For all j, k; > 3 ; that is, every full block has at least three
events. We can express

>, I(A)I(4)),
i< <i+3
n—2 n—3

ST IANI(Aiy ) (Aip2) + Y [T(ADT (A1) (Aiga) + (AT (Aitr2)I(Ais3)]

=1 i=1

and s

> I(ANI(Aig)I(Air2) I (Aiys)

i=1
by means of blocks ; that is, if the ¢ blocks have length k;,1 < j < ¢,
then the above sums equal

0 0
t 1 t
(32) > 3(k;—2)+ : , > Bk —3)+ 1]+
- : o :
! 3(t— 1) 20t — 1)
and Z;Zl(kj — 3), respectively, where
0

1

3(t - 1)
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denotes the number Z;;ll Lfi, L’ being 3if d =2 and 1 if d = 3 and 0
if d > 4 and

0

2

2t - 1)

denotes the number Zj;i Lfl,Lg being 2 if d = 2 and 0 if d > 3 and
d is the difference between last number of j-th block and first number
of next one. Since 23:1 k; = my, by (3.2), the left hand side of (3.1)
becomes

Hence, we get (3.1).
case (i) : For all j, k; = 2 ; that is, every full block has only two
events. We have

(33) > IAA)=> 1+ . |,

1<j<i+3
’ 3(t — 1)

n—2
Z I(A)I(Air1)I(Air2)

n—3

(3.4) + Z[I(Ai)I(Ai+1)I(Ai+3) + I(A)T(Aip2)I(Aiys))
) i=1

t 0
=Y 0+ 2
o 2t — 1)
and
n—3
(3.5) > T(A)I(Aix)I (Asy2)I(Airs) = 0.

=1
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Since Z;zl 2 =2t =m,, in view of (3.3), (3.4) and (3.5), the left hand
side of (3.1) is

t—1
Once again, (3.1) obtains.

case (iii) : For all j, k; = 1 ; that is, every full block has only one
event. We now have

0
+ 1
(3.6) > IAIA4) => 0+ 2 |,
i<j<i+3 j=1 :
t—1
S IA) (AT (Asro)
(3.7) z=1n_3
+ Z[I(Ai)I(Ai+1)I(Ai+3) + I(Ai)I(Aiy2)I(Ait3)] =0
and
n—3
(3.8) > I(ANI(Air1)I(Ass2)I(Asrs) = 0.
=1

Since Z;zl 1 =1t = m, in view of (3.6), (3.7) and (3.8), the left hand
side of (3.1) is

Once again, (3.1) obtains.
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case (iv) : There exist some ¢,j and r with k; = 1,k; = 2 and &k, > 3;
that is, there are several blocks which have only one, two and at least
three events at the same time.

Assume that we have ¢y, to, t3 blocks where they consist ¢; blocks with
k. > 3, ta blocks with k; = 2, t3 blocks with k; = 1. We now have
(3.9)

0

t1 2] 1
S IANI(A) =) 3k —2)+ D 1+ : ,
r=1 7j=1

1<j<i+3 :
3t1 +3ts+t3—1

S HADI(Ai) (A2

n—3
+ Z[I(Ai)I(Ai+1)I(Az‘+3) + I(A)I(Air2)I(Aiss)]

(3.10)
0
131 1
=) [B(k-—3)+1] + : and
r=1 :
2(t1 + tz)
n—3 t1
(3.11) > I(ANI(Aig1)I(Aig2)I(Airs) = Z(kr — 3), respectively.
i=1 r=1

Since 3Ly Ky + 3051 24+ Y2y 1 =my, in view of (3.9), (3.10) and
(3.11), the left hand side of (3.1) is

t—1

Once again, (3.1) obtains.
case (v) : There exist some ¢ and j with k; = 2, k; > 3 ; that is, every
full block has two and at least three events. Assume that we has tq,t;
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blocks where they consist ¢; blocks with k; > 3, 5 blocks with k; = 2.
We now have

(3.12)
0
tl t2 1

S I(ANI(A) =3k —2)+ > 1+ : ’
i<j<i+3 j=1 =1 °
3(t1+t2—1)
n—2
> I(A (A1) (Aisa)
=1
n—3

(3.13) + o (AT (Air1)I(Aiy3) + I(A)I(Aig2)1(Airs))

0
= S B —3) 41+
= 2ty + s — 1)
and
n—3 t1
(3.14) D I(ANI(Aig1)I(Air2)I(Aigs) = > (k; —3).
i=1 Jj=1

Since 771, kj + Y002, 2 = my, in view of (3.12), (3.13) and (3.14), the
left hand side of (3.1) is

Once again, (3.1) obtains.

case (vi) : There exist some ¢ and j with k; = 1,k; > 3ork; = 1,k; =
2. In the same manner as in (v), we get (3.1).

This completes the proof. O

PROOF OF THEOREM 2. Let Ay, Ag,---, A, be a sequence of events
on a given probability space, and let £ = m,, be the number of those
A’s which occur.
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By the binomial moments of (1.1), the right hand side of (2.2) becomes

W ()-5520)-250)-50)

We thus have to prove that

319 s = (7)- % ("’;) . 3—"(3‘)—8 (”3”) _ ”(—*)3 (5) =

if > 1 and (3.15) is greater than zero or equal to zero if z = 0.
The latter case is evident, having zero on both sides. Also, if z = 1,
both side of (3.16) equal 1 and if z = 2, left hand side of (3.16) is

9 - 8= 5§ forn >2andifz = 3, left hand side of (3.16) is

n(n—-1)
3- f((:_—f)) + = (3335?:)_2) > 1 for n > 3. Hence, for the sequel we may

assume & > 4.

Let g(z) = f(z) — 1. We must prove that g(z) > 0 for any integer
values z, 4 <z < n.

Then

o) = <m> _ MC”) +3_”;§<x> _ ”_“3<~’”) 1
! G \2/ (5 \3/ () \4
=—(@-1)(-(n-2)-(n-1)=-n).
Now, for any positive integers the polynomial g(z) obtains its mini-
mum value 0 at x =1,n —2,n — 1,n.

Hence, for any integers z > 4, g(z) > 0.
This completes the proof. d

4. Numerical examples

ExAMPLE 4-1. Let X; be the time to failure of the j-th component
of a piece of equipment. Assume that each X; is a unit exponential
variate; that is, for each 7,

PX;<x)=1—-¢e"%,(z>0).

Consider a group of five components, X, X3, X3, X4, X5. We assume
that we just know the following information.
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(a) X; is dependent on X1 ,X;12 and X3 ; that is, X; and X, are
dependent, so are X; and X3, X; and X4, X7 and X3, Xo and X4, Xo
and X5, X3 and X4, X3 and X5, finally, Xy and X5.

(b) X;,Xi+1 and X, are dependent on each other and X;,X;41 and
X;+3 are dependent on each other and X;,X;,2 and X; 3 are dependent
on each other. ; that is, X1,X; and X3 are dependent, so are X;,X5
and X4, Xl,Xz and X4, Xl,X3 and X4, XQ,Xg and X4, X2, X3 and X5,
X2,.X4 and X5, ﬁnally X3,X4 and X5.

(¢) Xi, Xit1, Xito and X;,3 are dependent on each other: that is,
X1, X9, X3 and X4 is dependent, so are X7, X3, X4 and Xs.

No other information is available on the interdependence of the com-
ponents. We also specify the multivariate distributions of the Xj.

For simplicity, let the multivariate distributions for all dependent
components specified in (a), (b) and (c) be the same. Let

P(X1<z,X2<y)
=P(X1<2,X3<y)=P(X1<z,X4<y)=P(X2<2,X3<y)
=P(Xo<z,X4<y)=P(Xo<z,X5<y)=P(Xz<z,X4<y)
=P(X3<z,X5<y)=P(Xya<z,X5 <)

— ~\(] — L—a—y
= (1_6 )(1'—6 )(1 26 )7

P(X; <z,X2<y,X3<2)
=P(Xe<z,Xs<y,Xa<z2)=P(Xs<z,X4<y,Xs5<2)
=P(X)<z,Xo<y,Xe<z)=P(Xo<z,X3<y,Xs5<2)
=PX1<z,X35<y,Xa<z)=P(Xs <z, X4 <y, X5 < 2)

—(l—e™)(l—eY)(1—e 7)1 %e—w—y—Z),

P(Xl <z,X5 <y,X3 < z,X4<u)
= P(Xy <z,X3 <y, X4 <2Xs<u)

1
= (1= eI — eI e(1 - e,
No further assumption is made.

We would like to estimate P(Wy > z) where W5 = min(Xy, X2, X3,
X4, Xs). We choose the events 4; = (X; < z) and then (m; = 0) =
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(Ws > x). For a numerical calculation, let us choose x = 0.1. We then
estimate P(Wy > 0.1). We have

5
S5 = P(A;) =5(1—e %) =0.4758,
i=1

> P(AinA;) =9[(1-e ") (1- %e“O'Z)] = 0.0481,
1<j<i+3
3 2
Z P(Az N Ai+1 N Ai+2) + Z[P(Al NA; 1N Ai+3)

i=1 i=1
1
+ P(A;NAjpaNAs)] =71 —e %31 - -?;6_0'3)] = 0.0045

and

2
1
Z P(AiNAi 1 NA 2N Ais) =2[(1 - 6_0'1)4(1 — 16_0'4)] = 0.0001.
i=1
Theorem 1 now gives P(m,, > 1) < 0.4321.

ExamMpPLE 4-2. Consider a numerical example 2 in the paper of Buk-
szar and Prekopa [1]. Let Aj, As, Az, A4, As be events with the fol-
lowing probabilities; Pi= P,=P;=FP;= P;=0.38 P 3=0.15, P; 3=0.13,
P 4=0.14, P5=0.12, P,3=0.20, P,4=0.21, P,3=0.18, P34=0.19,
P35=0.16, Py5=0.17 , P13 = Pio4 = Pips = Pi3a = Pi3s =
P ys=P34=P35=P45=P;45=007.

The cherry tree upper bound by Bukszar and Prekopa [1] is following

(4.1) P(AiUAzU---UA,) < 81— > P(A;N4)).
i,j€€
This yields P(Al U A2 U A5) < 0.87.
Now we have

S1 =) P(4;) =19, > P(Ain4;) =153,

i=1 i<j<i+3

2
P(A;NAip1 N Aia) + ) [P(Ai N Aip1 N Aiys)

i=1
+ P(Az N Ai+2 N Ai+3)] = 0.49,
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and assume that 21.2:1 PA;NA 1N AiaNAiz) =0.07.
Then theorem 1 gives P(m,, > 1) < 0.79.

Upper bound for P(US_; 4;)

inequality example 4-1 example 4-2

(1.4) 0.4544 1.16
(1.5) 0.4403 0.96
(4.1) 0.87
(2.1) 0.4321 0.79

In the above table, we see that (2.1) is the best upper bound.
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