• Title/Summary/Keyword: K-let

Search Result 2,363, Processing Time 0.034 seconds

SELF-ADJOINT INTERPOLATION ON AX = Y IN ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.29 no.1
    • /
    • pp.55-60
    • /
    • 2007
  • Given operators X and Y acting on a Hilbert space $\cal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, we showed the following : Let $\cal{L}$ be a subspace lattice acting on a Hilbert space $\cal{H}$ and let X and Y be operators in $\cal{B}(\cal{H})$. Let P be the projection onto $\bar{rangeX}$. If FE = EF for every $E\in\cal{L}$, then the following are equivalent: (1) $sup\{{{\parallel}E^{\perp}Yf\parallel\atop \parallel{E}^{\perp}Xf\parallel}\;:\;f{\in}\cal{H},\;E\in\cal{L}\}\$ < $\infty$, $\bar{range\;Y}\subset\bar{range\;X}$, and < Xf, Yg >=< Yf,Xg > for any f and g in $\cal{H}$. (2) There exists a self-adjoint operator A in Alg$\cal{L}$ such that AX = Y.

REMARK ON AVERAGE OF CLASS NUMBERS OF FUNCTION FIELDS

  • Jung, Hwanyup
    • Korean Journal of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.365-374
    • /
    • 2013
  • Let $k=\mathbb{F}_q(T)$ be a rational function field over the finite field $\mathbb{F}_q$, where q is a power of an odd prime number, and $\mathbb{A}=\mathbb{F}_q[T]$. Let ${\gamma}$ be a generator of $\mathbb{F}^*_q$. Let $\mathcal{H}_n$ be the subset of $\mathbb{A}$ consisting of monic square-free polynomials of degree n. In this paper we obtain an asymptotic formula for the mean value of $L(1,{\chi}_{\gamma}{\small{D}})$ and calculate the average value of the ideal class number $h_{\gamma}\small{D}$ when the average is taken over $D{\in}\mathcal{H}_{2g+2}$.

A NOTE ON GENERALIZED DERIVATIONS AS A JORDAN HOMOMORPHISMS

  • Chandrasekhar, Arusha;Tiwari, Shailesh Kumar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.709-737
    • /
    • 2020
  • Let R be a prime ring of characteristic different from 2. Suppose that F, G, H and T are generalized derivations of R. Let U be the Utumi quotient ring of R and C be the center of U, called the extended centroid of R and let f(x1, …, xn) be a non central multilinear polynomial over C. If F(f(r1, …, rn))G(f(r1, …, rn)) - f(r1, …, rn)T(f(r1, …, rn)) = H(f(r1, …, rn)2) for all r1, …, rn ∈ R, then we describe all possible forms of F, G, H and T.

CERTAIN DIFFERENCE POLYNOMIALS AND SHARED VALUES

  • Li, Xiao-Min;Yu, Hui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1529-1561
    • /
    • 2018
  • Let f and g be nonconstant meromorphic (entire, respectively) functions in the complex plane such that f and g are of finite order, let a and b be nonzero complex numbers and let n be a positive integer satisfying $n{\geq}21$ ($n{\geq}12$, respectively). We show that if the difference polynomials $f^n(z)+af(z+{\eta})$ and $g^n(z)+ag(z+{\eta})$ share b CM, and if f and g share 0 and ${\infty}$ CM, where ${\eta}{\neq}0$ is a complex number, then f and g are either equal or at least closely related. The results in this paper are difference analogues of the corresponding results from.

$\Theta$-DERIVATIONS ON PRIME RINGS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.313-321
    • /
    • 2003
  • In this Paper we show the following: Let R be a prime ring (with characteristic different two) and a $\in$ R. Let Θ, $\phi$ : R longrightarrow R be automorphisms and let d : R longrightarrow R be a nonzero Θ-derivation. (i) if[d($\chi$), a]Θo$\phi$ = 0 (or d([$\chi$, a]$\phi$ = 0) for all $\chi$ $\in$ R, then a+$\phi$(a) $\in$ Z, the conte. of R, (ii) if〈d($\chi$), a〉 = 0 for all $\chi$$\in$R, then d(a) =0. (iii) if [ad($\chi$), $\chi$$\phi$= 0 for all $\chi$$\in$R, then either a = 0 or R is commutative.

EXAMPLE AND COUNTEREXAMPLES IN DOUBLE INTEGRAL AND ITERATED INTEGRAL

  • Kim, Byung-Moo
    • The Pure and Applied Mathematics
    • /
    • v.2 no.2
    • /
    • pp.127-132
    • /
    • 1995
  • [1] Show that ∫$\_$0/$\^$1/ [∫$\_$0/$\^$1/ f($\chi$,y)dy] d$\chi$ = ∫$\_$0/$\^$1/[∫$\_$0/$\^$1/ f($\chi$,y)d$\chi$] Counterexample: If pk denotes the k-th prime number, let S(pk) = (equation omitted), let S = ∪$\_$k=1/$\^$$\infty$/ S(pk), and let Q = [0, 1]${\times}$[0, 1]. Define f on Q as follows; f($\chi$, y) = 0 ($\chi$, y)$\in$S, f($\chi$, y) = 1 ($\chi$, y)$\in$Q - S.(omitted)

  • PDF

INTEGRABILITY AS VALUES OF CUSP FORMS IN IMAGINARY QUADRATIC

  • Kim, Dae-Yeoul;Koo, Ja-Kyung
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.4
    • /
    • pp.585-594
    • /
    • 2001
  • Let η be the complex upper half plane, let h($\tau$) be a cusp form, and let $\tau$ be an imaginary quadratic in η. If h($\tau$)$\in$$\Omega$( $g_{2}$($\tau$)$^{m}$ $g_{3}$ ($\tau$)$^{ι}$with $\Omega$the field of algebraic numbers and m. l positive integers, then we show that h($\tau$) is integral over the ring Q[h/$\tau$/n/)…h($\tau$+n-1/n)] (No Abstract.see full/text)

  • PDF

NOTE ON CONTACT STRUCTURE AND SYMPLECTIC STRUCTURE

  • Cho, Mi-Sung;Cho, Yong-Seung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.181-189
    • /
    • 2000
  • Let (X, J) be a closed, connected almost complex four-manifold. Let $X_1$ be the complement of an open disc in X and let ${\varepsilon}_1$be the contact structure on the boundary ${\varepsilon}X_1$ which is compatible with a symplectic structure on $X_1$, Then we show that (X, J) is symplectic if and only if the contact structure ${\varepsilon}_1$ on ${\varepsilon}X_1$ is isomorphic to the standard contact structure on the 3-sphere $S^3$ and ${\varepsilon}X_1$is J-concave. Also we show that there is a contact structure ${\varepsilon}_0\ on\ S^2\times\ S^1$which is not strongly symplectically fillable but symplectically fillable, and that $(S^2{\times}S^1,\;{\varepsilon})$ has infinitely many non-diffeomorphic minimal fillings whose restrictions on$\S^2\times\ S^1$are ${\sigma}$ where ${\sigma}$ is the restriction of the standard symplectic structure on $S^2{\times}D^2$.

  • PDF

CONTINUITY OF LINEAR OPERATOR INTERTWINING WITH DECOMPOSABLE OPERATORS AND PURE HYPONORMAL OPERATORS

  • Park, Sung-Wook;Han, Hyuk;Park, Se Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.16 no.1
    • /
    • pp.37-48
    • /
    • 2003
  • In this paper, we show that for a pure hyponormal operator the analytic spectral subspace and the algebraic spectral subspace are coincide. Using this result, we have the following result: Let T be a decomposable operator on a Banach space X and let S be a pure hyponormal operator on a Hilbert space H. Then every linear operator ${\theta}:X{\rightarrow}H$ with $S{\theta}={\theta}T$ is automatically continuous.

  • PDF

A THEOREM OF G-INVARIANT MINIMAL HYPERSURFACES WITH CONSTANT SCALAR CURVATURES IN Sn+1

  • So, Jae-Up
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.381-398
    • /
    • 2009
  • Let $G\;=\;O(k){\times}O(k){\times}O(q)$ and let $M^n$ be a closed G-invariant minimal hypersurface with constant scalar curvature in $S^{n+1}$. Then we obtain a theorem: If $M^n$ has 2 distinct principal curvatures at some point p, then the square norm of the second fundamental form of $M^n$, S = n.